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FOREWORD

Continuing advances in space and Earth science knowledge require
increasing amounts of data to be gathered from spaceborne sensors.
NASA expects to launch sensors during the next two decades which will
be capable of producing an aggregate of 1500 Megabits per second if
operated simultaneously. Two examples of high-rate sensors are the
High Resolution Imaging Spectrometer (HIRIS) and the Synthetic
Aperture Radar (SAR) to be flown on the Earth Observing System's (EOS)
polar-orbiting platforms. These instruments are each capable of
producing over 300 megabits/sec. There are several materials science
experiments being designed for the Space Station whose aggregate
bandwidth will exceed the 300 Megabits per second being planned for
the Tracking and Data Relay Satellite (TDRS), if raw video data are
transmitted for interactive examination by scientists. Another
example of high-rate sensors for studies of the sun is the Orbiting
Solar Laboratory (at 16 to 20 megabits/sec), being considered for a
sun synchronous free-flyer mission. Such data rates cause stresses in
all aspects of end-to-end data systems. New technologies and
techniques are needed to relieve such stresses. Potential solutions
to the massive data problems are: data editing, greater transmission
bandwidths, higher density and faster media, and data compression. A
combination of all of the above will probably be needed to address

the problems completely.

As a step towards studying one particular solution, the Data Systems
Technology Working Group, chartered by the NASA Office of Aeronautics
and Space Technology, made a recommendation in the summer of 1987 to
hold a workshop on scientific data compression. 1In response to this
recommendation a steering committee (see list of members on page 10)
was formed with representation from NASA and universities. A meeting
of this committee was held on December 14, 1987 to review some of the
relevant work in data compression, and define the objectives, agenda

and the location of the workshop.



The objectives of the workshop were to:

- Bring together scientists and data compression technologists to
better understand science mission requirements and of potential
applications of the state-of-the-art data compression techniques

to future missions, and

- Formulate guidelines for future data compression research to be

supported by NASA for scientific purposes.

With these objectives in view, an agenda was set up to include several
invited presentations discussing requirements and constraints,
tutorials on compression techniques, descriptions of current research
in data compression algorithms and hardware, and case studies of
applications. To encourage participation by all the workshop
attendees, subpanel discussions were planned, with the attendees
required to select from one of four subpanels: Science Payload
Operations, Multispectral Imaging, Microwave Remote Sensing, and

Science Data Management.

The workshop was held during May 3 through 5, 1988 in Snowbird, Utah.
This Proceedings volume summarizes the results of the workshop.
Either an abstract and a set of viewgraphs or a short paper is
included, for each of the presentations, at the presenter's option.
For each of the four subpanels, a separate summary of recommendations

has been included later in this volune.

There is a variety of "lossless" and "lossy" data compression methods
available today, implemented in both software and hardware. Lossless
techniques preserve all the data as collected, including noise and
other artifacts, and are fully reversible. Lossy techniques, however,
are irreversible in the sense of being able to recover the data as
they were originally collected. However, they are still worthy of

consideration since they do not necessarily destroy relevant



scientific information. In fact, techniques carefully chosen in
coordination with scientists may increase the net scientific return
from a mission by enabling increased areal or temporal coverage or
increased data accuracy. It was acknowledged by the panels that data
which need to be preserved in anticipation of unidentified future user
requirements have to be stored in losslessly compressed (or

uncompressed) form.

There are several applications which can gain by both lossless and
lossy compression techniques. This sentiment, and a need for a
coordinated effort to identify specific discipline areas and
correspondingly appropriate compression techniques, were among the

most frequently expressed panel opinions.

David A. Nichols, Jet Propulsion Laboratory
H. K. Ramapriyan, Goddard Space Flight Center

Workshop Chairmen
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MICROWAVE REMOTE SENSING
SUBPANEL REPORT

The Microwave Remote Sensing Subpanel identified three basic
categories of needs for data compression by the scientific community

in the microwave remote sensing disciplines :

1. to lower the data storage requirements for archiving -
especially if the raw data from high volume, high data rate

sensors such as SAR's must be archived

2. to ease existing data link limitations and buffer capacities
for any data link rate system from the lowest rate network

lines to the leading edge, highest link rate systems

3. to fulfill the telescience needs of multiple users with

different data requirements.

For cases in the first category where raw data archiving is not
required (e.g. an operational SAR), on-board processing, image data
compression and/or image classification can be utilized. Indeed, any
or all of these procedures should be used wherever a cost-effective
procedure which fulfills the specified scientific needs has been or

could be developed.

In cases where raw data archiving is desired, lossless and near
lossless compression techniques should still be considered at the
"front-end" of systems at the Analog-to-Digital (A/D) stage.
Compression techniques such as block quantization have been
demonstrated to be effective instead of the usual scalar A/D
quantization. Vector quantization has been suggested and may indeed
produce competitive results but it was felt that the applicability of
this technique at this stage of the data stream needed further study.

PRECEDING PAGE BLANK NOT FILMED




Data compression techniques that are employed to conserve down-link
data in the second category above must consider the intended use of

the data. In these cases:

1. the user must have the option to allocate bits to best
satisfy his objective over a reasonable range of selectable
options, e.g. to allocate bits in a trade-off between
swathwidth covered versus quantization level (bits per

sample).

2. data compression techniques should be switchable (on or off)

so they can be mated to end user requirements.

In the third category many telescience setups could potentially
benefit from existing data compression techniques. Whenever data (or
imagery) needs to be sent to a remote site, whether it be a field
site, a mobile station or a university facility, the opportunities for
data compression utilization indicated in the two categories above are
also available for the telescience applications. This is the case
regardless of the processing stage of the data (or image) that needs

to be telemetered.

In the following the results of the Microwave Remote Sensing Subpanel

are presented in the form of:
1. specific recommendations
2. statements of the status of various techniques

3. suggested areas of needed research in data compression in the

three categories of needs identified.
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Recommendation

The philosophy of whether data compression should be employed in a

remote sensing system can be approached in several ways.

The Subpanel recommends that the end users' scientific research
should probably not directly address whether or not to use data
compression but rather the end users' requirements should be used by
the mission planners and system designers to evaluate whether or not
data compression is needed to fulfill those requirements within the
context of the mission technology and budget limitations.

When the mission needs indicate that data compression should be
implemented the issue of whether to implement a particular data

compression technique should also be driven by:
1. the users' requirements as well as
2. the cost-effectiveness of the technique.

A corollary formulated by the Subpanel was that the principal burden
is on the users to define stringently their requirements in terms of
the characteristics of the measurables of the microwave sensor.

The concept often used of archiving all the primitive data in order to
satisfy in the future as many users as possible and to accomplish this
with presently unidentified users' requirements leads to logical
traps in developing any specific mission plan as well as in the

sensor/platform design for that mission.

Wherever possible, distinct phases of a mission or even separate
missions, each driven by identified users' requirements, would be a
more wholesome, effective approach to addressing the question of the

firm needs for the retention and archiving of the data.
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Recommendation

In order to satisfy more diversified users' requirements any
implementation of a data compression technique(s) on-board the sensor
platform should be switchable (on/off) even if only a low-loss (quasi-

reversible) technique(s) is involved.
Recommendation

A lossless data compression technique is essentially a variable length
process that depends upon the individual data; therefore, the

compression is not as predictable as a fixed length process.

This should be an area of user consideration and an area for further
study -- for example, there is an implied trade-off between no data

compression versus data compression with increased area coverage or

swathwidth. It is strongly recommended that the requirements and

impact of Error Correction Coding (ECC) be incorporated in the study.
SYNTHETIC APERTURE RADAR (SAR) DATA COMPRESSION

SAR two dimensional imaging radar systems with their high data rates
and data volumes are excellent candidates for data compression
applications. This must be emphasized especially for future, planned
SAR missions that will incorporate multiple operating frequencies and
multiple polarizations with each data channel being acquired at a very

high rate.

The coherent nature of SARs gives rise to a rather unique nature for
the SAR data. The raw data is not picture-like; it is more like a
complex interferogram. The energy of each point target in the scene
domain is dispersed over a very large area in the raw data domain. An
effective two dimensional matched filtering process can collapse the

spread of energy from each point into a two dimensional radar image.
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The nature of the SAR data at various stages suggests the possibility
of the utilization of data compression at various stages of
processing: operating on the raw data, operating on the data after
range processing, or operating on the data after complete processing

to the image domain.
STATUS: SAR IMAGE DATA COMPRESSION

In the last few years several data compression techniques previously
applied to visual imagery have been implemented with two dimensional

SAR imagery with promising results.
Recommendation

Conventional data compression methods should be considered as viable
techniques to apply to SAR image data. Each method's sensitivities to
the special speckle "noise" characteristics of SAR imagery should be

better quantified.
STATUS: SAR RAW DATA COMPRESSION

Because the fundamental nature of SAR raw data tends to be "white" and
is phase sensitive to small changes in the data, the conventional data
compression techniques have not produced comparable results operating
on the raw data for the same compression factor as operating on the

image data.
Area of Needed Research

Further investigation of the fundamental limitations in the

application of data compression techniques to SAR raw data is needed.

This can be a very important issue especially in cases where on-board

processing to the image domain is either not desirable or not
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practical.
Desired Comparisons/Investigations of Data Compression Techniques

Strong opinions in the subpanel and in the SAR community have
indicated that both Block Quantization and Vector Quantization
techniques might be very useful for the data compression of pre-image

SAR data, especially SAR raw data.

A trade-off comparison of the application of Block Quantization and
Vector Quantization techniques for pre-image SAR data was considered

to be highly desirable.

A second desired investigation was the study of the use of Vector
Quantization instead of the commonly used Scalar Quantization at the
Analog-to-Digital level for SAR data.

FUNDAMENTAL NATURE OF DATA COMPRESSION

A fundamental tenet of data compression is to produce the most
faithful representation of the original data with a reduced data set.
When applied to imagery or imagery-like data some data compression
techniques intrinsically sacrifice primarily the radiometric fidelity
(the intensities), some the geometric fidelity (the spatial
representation of the image pixels), while others a hybrid of these

two.
Recommendation

The true efficacy of a given data compression technique is often scene
dependent and difficult to quantify. However, an attempt should be
made to evaluate/categorize each technique offered in terms of its
radiometric and geometric consequences in order to serve as a

reference framework for users to make a trade-off.
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Recommendation

There is often a significant gap in a user's knowledge of a microwave
sensor's capabilities and his(her) knowledge of their area of

expertise.

Earlier pilot programs to demonstrate the effects of nominated data
compression techniques by polling a statistically significant of users
should be continued. Each technique should be evaluated for various
scene types and for a range of compression ratios. It is strongly
recommended that the data compression techniques be evaluated using
scientific application criteria; e.g., image classification, rather

than the traditional Mean-Square-Error (MSE) criterion.

SUBPANEL OPINION: DATA COMPRESSION TECHNIQUES FOR ON-BOARD AND
DATA DISTRIBUTION CENTERS

Technology development and hardware/software implementation of data
compression techniques for on-board usage and ground-based central
distribution points do not seem to present any fundamental limitations

to the usage of data compression.

Further advances in the implementation of data compression techniques
in operational systems will require significant user community
education with respect to the benefits of data compression, e.g., in
the areas of data access, throughput, data volume, and storage

requirements.
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MULTI-SPECTRAL IMAGING
SUBPANEL REPORT

INTRODUCTION

Within the next two decades NASA will fly or will have flown numerous
imaging sensors in the visible and infrared portions of the electro-
magnetic spectrum. These sensors may be multiple-band spectrometers,
such as the HIRIS, or may have only a few bands such as an auroral
observer. In turn, the data rate may be massive (> 500 Mbs) or simply
large (° 1 Mbs). The downlink data channel for most of these
missions will not permit transmission of the full sensor data stream.
Planetary missions are power limited requiring further transmission

restrictions.

Data Compression of some form is required. Data Compression for this
report is simply reduction of the number of bits in a data stream.
This may be accomplished by a number of means from decimation to
universal coding to transform coding to ultimately end-product
extraction. Each of the means changes the data stream. However, the
methods may or may not be reversible. A reversible compression method
implies that a method exists to reconstruct the data stream exactly.
Therefore, reversible methods do not lose information or any artifact
of the data. However, irreversible compression does not necessarily
imply that information is lost. As an alternative distinction,
compression methods may be arbitrarily divided by their capability to
lose or not lose information. Bear in mind that the term information
refers to a probability measure in the sense of communications theory,
not necessarily scientific worth. 1In this sense, some compression

schemes may add to the worth.
The most prevalent data compression method is decimation in data

quantity via spatial or spectral "editing" or word length reduction.

For example, the HIRIS instrument baseline expects to send at most
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one-half the available spectral bands within a maximum two percent
duty cycle. Obviously, this method loses information, but it also
represents the easiest and directly cheapest compression method.
(Indirect costs may show that this method is not cheap at all.)

There are numerous compression methods relevant to multi-spectral
imaging data with varying compression rates and accompanying varying
amounts of information loss. This report will examine the
"technology" associated with these methods. What compression methods
are relevant? What technology represent the state-of-the-art? Wwhat
new development thrusts are required to utilize a feasible method?
What are the implementation issues? What is the scientific utility of
the compression technologies? What recommendations can be made for
NASA?

RELEVANT TECHNIQUES

Historically, NASA missions have been expensive; returning limited
amounts of information about a specific physical area. Great emphasis
was placed on preserving all of the information present in the sensor
data. Since the observations were usually the first ever, little was
known about what portion of the data was important and what was not
important. The tradeoff soon resulted in giving up some data in
order to receive all of the rest of the data. That is, all of the
data would be transmitted that could fit in the data channel.

Using the historical perspective only lossless compression methods are
relevant to multi-spectral data. However, the aforementioned

scenario is changing. The requirements for the massive capabilities
of the new sensors are not necessarily the same as past missions.
Analysis of the actual scientific goals and requirements with respect
to the capabilities of the lossy compression techniques may show that
lossy compression is useful and possibly even mission-enabling. For
that reason a variety of lossless and lossy data compression methods

are deemed relevant.
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The lossless compression methods usually consist of a family of
universal source coding algorithms developed at JPL and commonly
associated at JPL with Robert Rice. There are new techniques being
developed under universal coding. There are also revolutionary

techniques such as fractal compression which can be lossy or lossless.

There are many more lossy compression methods. These include the

various forms of vector quantization (lattice, finite state,

classified, product, predictive, hierarchical, ...), cluster
compression, adaptive and fixed block transform coding, DPCM/ADPCM,
fractal, information extraction, and of course decimation, to name
just a few. The most compression may be achieved with information
extraction and/or fractal compression. These methods are very focused
toward a specific goal (eg. Hausdorff Distance) and may be viewed as
very lossy by other criteria. They may also be computationally
massive. However, the vector quantization methods appear to be
feasible with moderate computational capabilities while maintaining
attractive compression ratios and possibly acceptable information
loss. On the other hand, DPCM and the Discrete Cosine Transform are
being implemented for use in other domains such as SAR and video
compression. Thus, they may be implemented very cheaply on a shared
basis. Unfortunately, they also do not get compression beyond
approximately 1.8:1 for multi-spectral data.

The acceptance of the lossy and lossless compression methods for
future missions rests on several factors including: availability, cost
both for implementation and for reversing the compression on the
ground (if it needs reversing). Lossy compression methods must also
prove that their information loss is acceptable while achieving
scientific goals. The discussion of these factors first relies on

some assessment of the current state-of-the-art.
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STATE-OF-THE-ART

Universal Source Coding (e.g. Rice Lossless Compression) is a mature
family of algorithms. It has been flown on Voyager and is planned for
Galileo and a host of other planetary missions. BARC and previous
Universal Coding algorithms-have been implemented for low data rates
using 8086 technologies for the planetary missions. Compression
factors of 2-3:1 may be reliably achieved with custom MSI electronics
at high data rates if the effort is funded.

DPCM is being implemented in GaAs by a number of tasks. The DCT is
being implemented with relation to SAR. A custom chip implementation
of VQ is in the design stage. The other methods are still largely in

the software stage.

Many members of this panel feel that custom VLSI architectures are the
only feasible technologies available for compression method
implementation. Certainly, the state-of-the-art for flight
certifiable electronics is restricted to slow-speed LSI and MSI
products in the generic "off-the-shelf" market. Designs using these
products yield unsatisfactory results in size, power, performance, and
reliability. On the other hand, high speed custom chips such as a
GaAs ALU are in the test phase now.

The state-of-the-art is a very fleeting concept in the area of data
compression. As stated, decimation is the prevalent method for
compression. However, there are proposals before NASA which would
advance the threshold significantly if certain implementation issues
are satisfied.

IMPLEMENTATION ISSUES
In order to utilize any of these methods, first and foremost the

effect of the compression on the data should be quantified using some

scientifically meaningful metric. This metric is necessary to gain
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acceptance by the user community. The metric is very much dependent
on the actual implementation of the compression method, as well as on
the type of data. In addition, a number of metrics may be necessary
for each method in order to relate the effects to the different users.

Secondly, these methods and accompanying implementation must fly on
NASA missions. As a result, the technology must minimally use
resources of size, weight, and power. The technology must be reliable

and thus be space qualified.

The methods must be robust in order to handle a variety of data
characteristics. The technology must keep up with the flow of data
from the sensor though large data buffers may help somewhat.

Currently, 1.5 to 2 micron CMOS MSI chips are the limit of capability
in technology. Few denser chips, custom or otherwise, have been
gqualified for NASA missions. Furthermore, chip speed may be reduced
by as much as 50% for space qualified parts. There is no space
qualification standard. Each technology and design must be evaluated
for the specifics of each mission. Space qualification for low Earth
equatorial orbits is far simpler than for polar orbits through the Van
Allen belts where radiation is orders of magnitude greater.

Space qualification is an expensive process. Testing for

qualification can cost up to half a million dollars. If the chip does
not pass, process modifications may run in the millions. Chip
characteristics vary widely from batch to batch. One batch may pass
while another may fail.

As mentioned, off-the-shelf electronic parts are currently too slow,
too large, and too power expensive for near future missions. An
attractive alternative is custom parts using gate arrays or standard
cell designs. Unless significant advancements are made in
programmable electronic parts, only fixed algorithmic designs may be
utilizable in space designs. Thus, every algorithm would have to be
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implemented in VLSI. Every algorithm change beyond coefficient and
data changes would require a new chip. Every new chip would have to
be qualified for every mission. At this time these are the only

feasible means of meeting mission requirements.

Even with custom parts some algorithms, such as information extraction
or fractal compression, require massive computational capabilities and
possibly massive memory storage. Giga- operations per second are
required to keep up with HIRIS data flow (eighth order bits per

second) for moderate calculations such as mixture decomposition.

Gallium Arsenide technology is reputedly naturall§ radiation hardened.

However, only a few chips have been produced so far using GaAs.

Finally, a compression method can not be evaluated until it is flown
in actual flight conditions. There is a need to fundamentally adapt

many of the algorithms in real time to changing conditions. These
changes can only be met by re-configurable or programmable
architectures. Fixed architectures do not have the dynamic qualities
for such changes. No currently available space qualified
architectures can support such changes at the high rates required by

the imaging spectrometers.

Rather than accept the limitations raised in the implementation

issues at face value, a set of technological thrusts is proposed.
TECHNOLOGY DEVELOPMENT REQUIREMENTS

In order to accept a lossy compression method, a scientist/user must
understand the nature of the loss (and gaining in total data).
Evaluation of the relevant/irrelevant scientific content rather than
communication theory information must be completed and made available
to the investigator community. This evaluation can not be performed
without extensive interaction with the user community. Often the user

community will be too diverse to allow a ready consensus. However,
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user driven sensors such as HIRIS will allow such interaction for
specifically requested information. This interaction is critical to
the decimation mode already in the HIRIS baseline. Extending this
interaction to allow other forms of compression is necessary as in the

Imaging Spectrometer Flight Processor proposal.

A meaningful error metric which may extend beyond mean square error or
Hausdorff distance is required to perform the evaluation. Derivation
of this user specific metric is a major technological thrust for each

of the lossy compression methods.

The lossless compression methods do not have the great requirement for
a meaningful metric. However, current implementations of lossless
compression do not have the performance required to support the high
data rate imaging spectrometers. A space-qualified high-speed custom

CMOS or GaAs implementation of lossless compression is required.

Custom VLSI design tools should be pursued. Standard cell libraries
and process qualified gate arrays would decrease the chip cost for
custom chips. Increased use throughout NASA would build a knowledge

base which could be tapped for future missions.

A massive computational though possibly limited-programmable digital
signal processor should be pursued as a test bed for data compression
algorithms and as a re-configurable compressor. This may be the
Configurable High Rate Processor or some high data rate parallel
processor such as the information extractor module included in the
Imaging Spectrometer Flight Processor. NASA would need to directly
support space-related programmable electronics development in addition
to utilizing DoD generated parts. Giga-op parallel digital signal
processors are required using large 25 ns memories and ultra-high
speed support electronics. Such devices can be built using currently
available commercial parts. The electronics industry needs support to

build space-qualified versions of these devices.
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SCIENTIFIC UTILITY

Data compression is advantageous at face value. A more complete data
set extends the information available for scientific analysis.
However, other circumstances, such as additional ground processing
requirements, may temper the benefit. A detailed and individual
examination of the benefits versus costs of using data compression is

necessary.

There are some general benefits which may be gained from compression.
Some forms of compression may perform initial steps of the processing
stream. For example, transform coding may be utilized to reduce noise
artifacts. Compression may be information extractive. The ultimate
compression is the extraction of only the final scientific product.
While some of these products require extensive computation, still
others, such as band ratios, require only minimal computation
capabilities. Compression may extend the observation cycle if
combined with prudent processing to perform long term and frequent

analysis.

There are various tradeoffs which can be made for the compression
utility. The data inherently contains noise. Compression which
degrades the signal no more than the already present noise may be
lossy in a communication sense but is not lossy with respect to
scientific information. A well known technique for image analysis
adds white noise to compensate for the observed effect of colored
noise. Thus the lossy compression error may be beneficial for some
analysis techniques. However, great care should be exercised when
allowing additional noise. The observational quality criterion of
visual products or speech signals is not usually satisfactory for
precise remote sensing analysis. Shifts in position or smoothed
spectra may remove precisely that information desired from multi-

spectral images.

The science user must be aware that spectral and spatial decimation is
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a tradeoff which is not always satisfactory either. The requirements
of decimation may not allow for frequent observations of limited time
phenomena such as auroral storms. The analysis methods may tolerate a
noisy data set more than the lack of data during the intensive

periods. Decimation is really "lossy" in the broader context.

Overall, the main decision of scientific utility is best made by the
scientist users. Comparison of their real goals with the tradeoffs
inherent in the data system will decide what compression methods are
necessary and useful. Familiarity with available compression methods
with an extended set of available compression technologies will help
the scientist with that decision.

GUIDELINES FOR OPTIMAL UTILIZATION

The various methods have a host of caveats related to their use.
Lossless compression may give you all of the data but you only get
roughly 2:1 compression. Lossless compression is ultimately limited
by the entropy of the data relative to a model. Models are poor in
initial exploration.

Without the technological thrusts mentioned earlier, many of the
techniques are not available at all. Even with the necessary
technology, some methods such as Fractal compression only work well on
truly large data sets, but can maybe get 20:1. Most methods do not
work well or at all with random data such as in an encrypted data
stream. Vector Quantization works best with moderate to large memory
codebooks, but can maybe get 10:1. DPCM and other popular compression

methods may not give you compression beyond roughly 1.8:1.
These caveats form a de facto set of rules on using the various

methods. A detailed and individual examination of the method's

attributes versus the requirements of a data system is necessary.
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RECOMMENDATICNS

To summarize, a set of recommendations with regards to data
compression technologies and their use may be compiled. First, the
data compression methods, lossless and lossy, are considered to be
useful to NASA multi-spectral imaging missions. In order to
understand their utility, gain acceptance of the technology, and fully
utilize the compression potential, the investigator scientists, system
design engineers, and compression proponents should work as a team
from the very conception of a NASA mission. The sensor and
accompanying data system with compression should be jointly designed.
Instrument proposals should contain data compression technologies.

The instrument and data system should then be reviewed as an overall
package. The review team should contain data compression specialists

in order to analyze the proposal optimally. The end result is

expected to be a better overall use of limited NASA resources such as
link bandwidth and power, on-board and ground processing, ground data

links, and archiving space.

In order to facilitate evaluation of the compression methods, a
possibly new set of error metrics associated with the compression
methods should be formulated with respect to individual scientific
goals and analysis methods. A set of multi-spectral image models with
environmental (atmospheric, lighting, etc.) variables will also
facilitate the evaluation. A resource or set of resources, advisory
and computational, where a scientist or design engineer can bring his
particular data or sensor models to get help in performing that
evaluation is strongly recommended. This testbed should also include
the capability to evaluate chip sets with the data models.
Ultimately, various compression algorithms should be flown in a test

environment to illustrate their utility.

NASA missions have varying requirements. For example, deep space
exploration spacecraft are severely power, mass, and volume limited.

The bandwidth considerations are less important. Small missions have
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power, mass, and volume limitations similar to deep space explorers.
Polar orbiters have more stringent radiation requirements. Data
compression technologies which operate well within these constraints

should be pursued as vigorously as the more visible high rate sensors.

The available data compression technologies should be extended.

Lossless compression should be implemented in custom VLSI, preferably
high speed GaAs, but minimally CMOS. Custom VLSI design tools should
be pursued throughout NASA to readily and cheaply create the adaptive

portion of the lossless technology.

Additionally, lossy compression techniques should be pursued in custom

VLSI. A Vector Quantization chip set should be completed in a flight

certified architecture.

NASA should sponsor work in high performance programmable or re-
configurable VLSI architectures as well as utilizing DoD designs.
This work should be pursued both at NASA centers and through

established industry. Limited markets are always a problem, but often

commercial chips perform the functions required in a NASA shell
design. Help in space qualifying a chip set may be an attractive
alternative to re-creating the chip from scratch or finding a less

useful DoD version.

NASA should pursue synergistic electronics endeavors with DoD. The
chip designs should include NASA requirements as well as DoD
requirements in order to maximally utilize limited government funding.
Often DARPA solely funds and solely guides development efforts with
the result that the chip sets may not be useful in similar NASA tasks.

Research and development into lossy compression methods should
continue using input from the multi-spectral imaging community.
Algorithm development based on error metrics specific to real
scientific goals should provide better methods with high compression

ratios coupled with minimal resource usage and minimal relevant
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information loss.

Primers on lossy and lossless compression should be either created or
pursued within the NASA community. There are many fine texts already.
They should be surveyed on an individual basis and supplemented with

sensor/user specific information.

Finally, NASA should continue efforts such as the Data Compression
Workshop. The workshop provides a valuable information sharing
opportunity in the area of Multi-Spectral Imaging Data Compression.
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SCIENCE DATA MANAGEMENT
SUBPANEL REPORT

INTRODUCTION

This paper summarizes the meetings of the panel on "Science Data
Management" that was held as part of the 1988 NASA Scientific Data
Compression Workshop. The panel was co-chaired by the authors of this
paper; a list of participants is given in Appendix A. 1Its purpose was
to examine the potential role of data compression in NASA science data
management. The discussion started with the question of exactly what
should be encompassed by the term "science data management”, the
subject of the next section. The remainder of this section contains
background information on data compression and related terms that are

used throughout this paper.

Data compression is the process of encoding ("compressing") a body of
data into a smaller body of data. It must be possible for the
compressed data to be decoded ("decompressed") back to the original
data (or some acceptable approximation to the original data). Not all
data is compressible. However, data that arises in practice typically
contains redundancy of which compression algorithms may take
advantage. Although data compression has many applications, the two

most common are the following:

Data Storage: A body of data is compressed before it is stored

on some digital storage device (e.g., a computer disk or tape).
This process allows more data to be placed on a given device.

When data is retrieved from the device, it is decompressed.

Data Communications: Communication links that are commonly used

to transmit digital data include cables between a computer and
storage devices, phone links and satellite channels. A sender
can compress data before transmitting it and the receiver can

decompress the data after receiving it, thus effectively
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increasing the data rate of the communication channel by a factor

corresponding to how much the data is compressed.

Effective algorithms for data compression have been known since the
early 1950's. There has traditionally been a tradeoff between the
benefits of employing data compression versus the computational costs
incurred to perform the encoding and subsequent decoding. However,
with the advent of cheap microprocessors and custom chips, data
compression is rapidly becoming a standard component of
communications and data storage. A data compression/decompression
chip can be placed at the ends of a communication channel with no
computational overhead incurred by the communicating processes.
Similarly, secondary storage space can be increased by data

compression/decompression hardware (that is invisible to the user).

Some data compression algorithms rely on prior knowledge about the
data (statistics about character frequencies, etc.) in order to
compress it. By contrast, dynamic or adaptive methods start with no
prior knowledge of the data and as more data is seen, more is

"]Jearned" about the data, and more compression is achieved.

With lossless data compression, it must be possible to recover an
exact copy of the original data from the compressed data. Lossless
compression is appropriate for textual data (printed English such as
this paper, programming language source or object code, database
information, numerical data, electronic mail, certain types of
scientific data, etc.) where it may be unacceptable to lose even a
single bit of information. By contrast, lossy data compression allows
the decompressed data to be an approximation to the original data.

For various types of data, what defines a "close approximation" is an
area of research in itself. An important application of lossy
compression is the compression of digitally sampled analog data (DSAD)
such as speech, music, black and white or color images, video, and, of
particular significance to this workshop, satellite data. For

example, if one sends a digital representation of a photograph over a
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communication link, it may only be important that the photograph
received looks identical to the original (to the human eye); that is
as long as this is true, it is acceptable for the bits received to
differ from the bits sent. For other applications, what looks good to
the human eye may be relatively unimportant compared to criteria based

on some other form of measurement.

Although lossless data compression may be viewed as a special case of
lossy compression, in practice, textual data and DSAD are two very
distinct "flavors" of data, and the amount of compression gained
typically differs greatly between the two classes of data. For
example, English text may only be compressed by a factor of 2 to 3 by
a lossless algorithm where as a black and white photograph that is
represented by a 512 by 512 array of 8-bit pixels may be compressed by
a factor of more than of 50-to-1 and still "look" acceptable.

With lossy compression, information is intentionally discarded to
increase the amount of compression. Information may also be
unintentionally lost when errors (often called "noise") occur on the
communication link or storage medium. Most "pure" versions of both
lossless and lossy compression algorithms assume that all devices in
question are noiseless; that is, data received is always identical to
that sent. This assumption can be crucial for dynamic methods that
rely on an encoder and decoder maintaining certain identical local
information (that could become different in the presence of noise).
Communication links and storage mediums are never truly noiseless in
practice. However, if sufficient error detection and correcting
hardware is not available, most data compression algorithms can be
modified to tolerate noise.

SCOPE OF THE PANEL
Figure 1 depicts the NASA space data gathering network. Data is first

gathered by sensors in space, some preliminary processing may occur at

the sensor, some processing (including data compression) may occur at
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the satellite prior to transmission, data is sent down the satellite
link, received data may be processed (including decompression), and
the received data is placed in the Level 0 archive. Copies of some of
the data stored at Level 0 may be passed through successively higher
levels of processing and stored at Levels 1, 2, and 3; see Table 1 for
a definition of these levels. Science data sets stored at Levels 0
through 3 consist of measurement data (the actual processed and
unprocessed measurements passed down from space), meta data
(information about the measurement data), and ancillary data

(associated data necessary to use the measurements).

The scope of the panel on science data management was limited to the
role of data compression for the storage and distribution of science

data sets, after they have reached the Level 0 archive.

The scope of the panel is depicted by the dashed lines in Figure 1.

Included in this scope are:

- The handling and storage of science data sets on the ground

starting after Level 0 processing.
- Storage of all higher level processed data.

- Buffering of data between the archives and the users.
- The movement of data between points on the ground (including

both electronic transfers and shipping by physical media)
ISSUES DISCUSSED BY THE PANEL
After determining the scope of the panel but before attempting to

make recommendations for the uses of data compression in science data

management, the panel entered general discussion on a number of key

issues:
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The Necessity of Data Compression

The age-old question is: Are storage costs decreasing so rapidly as to
make data compression unnecessary in the near or at least not too
distant future? The mere fact that this is an old question lends
credit to the hypothesis that no matter how inexpensive storage costs
are, there is never enough. The consensus of the panel was that for
the next 20 years (and probably much longer), compression is likely to
be cost-effective and will not represent a significant complication
for storage and transmission hardware and software.

The role of Decompression in Level 0 Processing

The NASA definition of Level 0 processing is the removal of the
artifacts of telecommunications. The consensus of the panel was that
this processing should include decompression only if it was part of a

telecommunication l1ink function that was applied to all data.

The Use of Lossy Compression

The panel agreed that for many classes of data, lossy compression may
be necessary to achieve large amounts of compression. However, it was
agreed that for permanent archival storage at Level 0 (and in some
cases, at Level 1A), only lossless compression methods should be

used. Any exceptions to this rule should be carefully studied. The
panel agreed that this issue was sufficiently important to warrant a
formal statement on the matter. After careful discussion by the panel
of the content of this statement, Jim Weiss drafted the following:

It is the goal of Science Data Management to provide losslessly
compressed or un-compressed data as the basic set, or lowest level of
archival data product maintained by the system. This basic set then
would be equivalent to the highest quality of data possible provided

by the system and will constitute the permanent archive. In some
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cases, such as voice or video data, users may choose a form of lossy
compression for the archiving of this basic set. 1In this case the
user community must be involved in, and fully aware of, the decision
to archive degraded data products with no means for improving that
data at a later date.

It is the belief of this panel that the basic archived set need not

be lossy compressed, degraded data. This belief is based on the fact
that increased densities are being supported by the prime storage
media and that the costs associated with these increased densities has
been consistently decreasing, thus we are getting more storage for
less cost. It is recognized, however, that some users may still

choose the lossy case.
Acceptance of Lossy Compression by the Scientific Community

A common reaction of scientists when asked about lossy compression
is: "I do not want to loose any information; only lossless
compression is acceptable". It was a general consensus of the panel
that understanding and acceptance of lossy compression by the
scientific community is a key issue. The following items were

discussed:

- Much research is needed for measures of quality for

decompressed data.

- Scientists need to be educated about the data-quality versus

data-volume tradeoff.

- Scientists should be consulted throughout the entire

life-cycle of compression algorithms design.

- Algorithms should be designed to provide the user with control
over the data-quality versus data-volume tradeoff inherent with

lossy compression.
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-~ Data compression hardware and software "tools" must be
available to the end-users. Affordability of such tools is an

important issue.

APPLICATIONS OF DATA COMPRESSION

Mass Storage: Compression may be used for all data storage. As

mentioned earlier, permanent archival storage must, under most
circumstances, be lossless. For other kinds of storage, lossy
compression may be able to provide large reductions in space while
maintaining acceptable quality for the given end-user community. The
following points should be noted:

- The use of lossy compression must be studied on an

application specific basis.

- In all cases, the data compression/decompression algorithms
must be stored with the data.

- Compression algorithms should be designed so as to insure that
a single error cannot propagate additional errors over large

amounts of data.

- Algorithms and protocols should be ISO compatible where

feasible.

Electronic Movement of Data: The two major types of electronic
movement of data are browsing and product delivery. For the browse
application, highly lossy techniques that yield high data-rates may be
the most appropriate. For product delivery, larger time delays may be
acceptable to insure adequate quality. Algorithms that allow the user
to select a given quality versus data-rate tradeoff (which in the
limit could force lossless compression) are most appropriate for this

application. The following points should be noted:
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- Decompression algorithms that are consistent with low-cost

work-stations are needed.
- Compression/decompression algorithms must be designed to
work with noisy links. The effective data-rate should degrade

"gracefully" as the noise on the link increases.

On-Line Storage: Most of the issues discussed above for mass storage

and electronic movement apply here. An additional issue that was
discussed by the panel is the use of data compression in conjunction
with data base management systems; the consensus was that this issue

requires future research.
RECOMMENDATIONS FOR FURTHER STUDY AND DEVELOPMENT

The general conclusion of the panel was that data compression can most
surely play a significant role in science data management, even if
only existing technology is employed. However, to fully realize the
potential of data compression, the panel recommends the following
research be encouraged and funded by NASA and other agencies:

- Further development of high performance data compression

algorithms, software, and hardware.

- Measures for data quality for end-~users.

- Development of valid data descriptions (instrument and
application dependent) that could be used to enhance

compression algorithms for particular applications.

- Compression algorithms applicable at the data representation

level.
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- Study of whether compression should be applied at the format
level.

- Compression techniques for information stored and searched

using data base management systems.

- Efficient methods of combining compression with encryption and

error correction/detection.

A periodic survey of the state of the art of data compression.

Finally, in addition to the above items, the panel recommends that
NASA continue to sponsor a periodic workshop or conference on data

compression.
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TABLE 1. DATA LEVEL DEFINITIONS

The following "level" definitions are used to describe the
various stages of data processing which occur on remote
scientific data.

Level

Level

Level

Level

Level

Level

0]

1A

1B

Raw instrument data at full resolution where the
artifacts of the transport of the data from space
to ground have been removed but no further
processing has taken place.

Reconstructed, unprocessed instrument data at full
resolution, time-referenced, and annotated with
ancillary information including radiometric and
geometric calibration. The exact definition of 1A
varies with science discipline; however, the
processing that produces 1A data is always
reversible to recreate the original raw
measurements.

Data that has been processed to sensor units
(i.e., radar backscatter cross-section, brightness
temperature, etc.). Not all instruments have a
Level 1B equivalent. May be an irreversible
product.

Derived physical variables (e.g. ocean wave
heights, soil moisture, surface temperature) at
the same resolution and location as the Level 1
data.

Variables mapped on uniform space-time grid
scales. Sometimes with completeness and
consistency properties (e.g. missing points
interpolated, mosaicing to form larger regions).

Model output or results from analyses of lower
level data (i.e., variables that were not measured
directly by the instruments, but instead are
derived usually from a combination of instruments'’
measurements) .
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SCIENCE PAYLOAD OPERATIONS
SUBPANEL REPORT

The Science Payload Operations Subpanel limited its attention almost
exclusively to Earth-orbiting vehicles, such as the space shuttle and
the space station. The focus of this panel was not the acquisition of
data in space-based remote sensing, but rather the operations of
equipment and experiments in space for scientific purposes. The high
rate data needs for on-board laboratory-type experiments are
typically confined to video for visual inspection and do not
constitute precise measurements. This means that lossy forms of data
compression are typically acceptable. For study purposes, the
spectrum of science payload operations was divided into three parts by

the panel. They are:

a. Material Science
b. Laboratory Support
c. Telerobotics/Telescience/Teleoperations

The major subcategories in material science were: (1) combustion,
involving 35 experiments, (2) fluid dynamics, involving approximately
12 experiments, and (3) containerless processing and furnace
facilities. Laboratory support includes glove box and workbench
operations, and on-board image buffering. Telerobotics encompasses
activities such as orbital-maneuvering vehicles, planetary rovers,
crew training via uplinks, and teleconferencing.

The panel determined that there are compression needs for three facets
of space operations:
a. Command and control
Data transfer

c. Onboard data storage

These three categories respectively address: (1) the problem of
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examining experiments from the ground as they are being performed, (2)
transfer of raw data to the ground for processing, and (3) in-space
storage of massive data for transmission to the ground at a later
time. Through inputs from various sources and discussions during the
sessions, it became clear that the type and degree of compression
required depends very much on the type of experiment in question.

A key question arose as to whether compression ability should be
provided by the space station as a common service or by the experiment
itself. It was decided that both approaches were needed to be able to
embrace the broad spectrum of requirements effectively. It seems
certain that the space station will need to provide a basic
compression facility operating perhaps at a ratio of four to one.
Individual experiments would then have the option of employing

lossless or lossy compression, as additionally required.

Because of the broad variety of experiments which are expected in
space, both real-time and delayed transfer of data from the space-
based platform to the ground will almost certainly be required. 1In
many cases this will involve very large storage capacities. Indeed,
some preliminary experimental objectives lead to storage requirements
which appear unachievable at this point. Nonetheless, on the average,

data rate problems seem to be more serious than data volume problems.

Because of the critical nature of these issues, the subpanel suggests
that a formal sponsorship by NASA of further work in data compression
techniques, primarily for the support of space station experiment
designers, should be undertaken, starting immediately. As a part of
this activity, it is recommended that NASA obtain, through its own
resource and with the help of session participants, a broad list of
compression researchers capable of participating with or assisting

NASA in these tasks.

The panel recognizes that space science experimenters, because of

their disciplines, may need some assistance in correlating the
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technologies of compression with practical and theoretical
requirements of their proposed experiments. As a result, the subpanel
took upon itself to begin the process of generating a matrix of
compression types and capabilities. The matrix (attached) addresses
five types of levels of compression from lossless to feature
extraction. These are cross-referenced with eight capabilities
embodying both practical and theoretical parameters. The chart is
completed in the areas where the panel reached general consensus. The
areas left blank are either unknown or too complex to have a
meaningful generalization. It is believed that a fully-completed and
documented guide of this sort would aid participants in making

appropriate choices concerning NASA missions.

The panel spent some time considering high impact technology areas
which would greatly ameliorate data transmission and storage problems
for NASA in the future. Two of these seemed urgent enough to mention
here. The first technology area involves integrating coder and sensor
hardware, perhaps right at the focal plane, in high-performance
applications where the hardware proliferation implied by
nonintegration would result in too great a performance penalty. The
second technology area has to do with mass storage. It is clear that
the data rate imposed by some advanced experiments, especially in the
combustion area, utilizing high resolution/high frame rate video is
far too great to permit either direct transmission or data storage.
The reason for the latter is the sheer bulk of data implied. While
very large data storage capacities are now emerging, especially in the
areas of optical disk and optical tape, it would seem prudent for NASA
to examine the relevance of data compression in enhancing the '
performance of these devices in order to meet its future unique

mission requirements.
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LEGEND

AO SUPPLIED UNDER AO; P.I. CLASS
AUS AUSTRALIA
C CANADA
DB DIRECT BROADCAST
DR DATA RELAY SATELLITE (ESA)
E ESA
F FRANCE
FAC FACILITY INSTRUMENT (SAME AS CORE INSTRUMENT)
FRG FEDERAL REPUBLIC OF GERMANY
I INTERNATIONAL
JAPAN
N NOAA
OPS OPERATIONAL
P/0O POTENTIAL OPERATIONAL INSTRUMENT
RES RESEARCH INSTRUMENT
U U.S.A.

U.K. UNITED KINGDOM
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ALT

AMSR

AMSU

ARGOS+

ATLID

ATSR+

AVHRR

CLSR

CR

CSR

Direct

FIRE

F/P-INT
GLRS
GOMR

HIRIS

HIRS

HRIS

LIST OF INSTRUMENT ACRONYMS USED IN ANNEX 1

Radar Altimeter (TOPEX Class of instrument)
Advanced Microwave Scanning Radiometer
(1500 Km swath; 5 bands (5-60 GHz); 2-20 Knm
resolution)

Advanced Microwave Sounding Unit (as on NOAA - K,L,M)

An advanced version of the Data Collection and
Localization System of NOAA - K,L,M

Atmospheric Lidar (a backscatter lidar)

An advanced version of the Along Track Scanning
Radiometer provided for ERS-1 '

Advanced Very High Resolution Radiometer (as on NOAA-
K,L,M)

Cooled infra-red Limb Sounding Radiometer

Correlation Radiometer (a gas cell non-dispersive
spectrometer)

Conical Scan Radiometer (for measuring Earth
radiation budget)

A direct downlink similar to HRPT, APT, and DSB on
NOAA - Broadcast K,L,M

Far Infra-Red Experiment (a submillimetre wave limb
sounder)

Fabry-Perot Interfermeter
Geodynamic Laser Ranging System
Global Ozone Monitoring System

High Resolution Imaging Spectrometer (as propose by
NASA)

High Resolution Infra-red Radiation Sounder (as on
NOAA - K,L,M)

High Resolution Imaging Spectrometer (as proposed by
Europe)

Magnetic Field Monitor

83




MERIS

MLS

MODIS-N

MODIS-T
MPD
OCTS
PEM

PPS/PODS

SAR
SEM
S & R
STP
SUSIM

WIND-
SCATTEROMETER

Medium Resolution Imaging Spectrometer (for ocean and
coastal ocean monitoring)

Microwave Limb Sounder

Moderate Resolution Imaging Spectrometer - Nadir
looking

Moderate Resolution Imaging Spectrometer - Tiltable
Magneto-Plasma Dynamics

Ocean Color and Temperature Scanner

Particle Environment Monitor

Precise Positioning System/Precise Orbit
Determination System

Synthetic Aperture Radar

Space Environment Monitor

Search and Rescue (as on NOAA - K,L,M)

Solar Terrestrial Physics

Solar Ultraviolet Spectral Irradiance Monitor

Microwave Wind Scatterometer; double sided swath
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SPACE DATA MANAGEMENT AT THE NSSDC:
APPLICATIONS FOR DATA COMPRESSION

James L. Green

National Space Science Data Center
ABSTRACT

The National Space Science Data Center (NSSDC), which was established
in 1966, is the largest archive for processed data from NASA's space
and Earth science missions. The NSSDC manages over 120,000 data tapes
with over 4,000 data sets. The size of the digital archive is
approximately 6,000 gigabytes with all of this data in its original
uncompressed form. By 1995 the NSSDC digital archive is expected to

more than quadruple in size reaching over 28,000 gigabytes.

The NSSDC is beginning several new thrusts allowing it to better serve
the scientific community and keep up with managing the ever increasing
volumes of data. These thrusts involve managing larger and larger
amounts of information and data online, employing mass storage
techniques, and the use of low rate communications networks to move
requested data to remote sites in the United States, Europe and
Canada. The success of these new thrusts, combined with the
tremendous volume of data expected to be archived at the NSSDC,
clearly indicates that new and innovative storage and data management

solutions must be sought and implemented.

Although not presently used at the NSSDC, data compression techniques
may be a very important tool for managing a large fraction or all of
the NSSDC archive in the future. Some future applications would
consist of compressing online data in order to have more data readily
available, compress requested data that must be moved over low rate
ground networks, and compress all the digital data in the NSSDC

archive for a cost effective backup that would be used only in the
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event of a disaster.

INTRODUCTION

The purpose of the NSSDC is to serve as an archive and distribution
center for data obtained on NASA space and Earth science flight
investigations and to perform a variety of services to enhance the
overall scientific return from NASA's initial investment in these
missions. The NSSDC usually receives data from NASA principal
investigators or directly from NASA projects where facility
instruments are being flown. However, the NSSDC also obtains data
from other government and international agencies involved in space

research.

Although the NSSDC does not currently store the data it manages in its
archive in compressed form, data compression may very well be a future
requirement. In this paper I will discuss the reasons for considering
the use of data compression techniques at the NSSDC by loocking at the
future requirements for data distribution and the growing size of the
data center's archive. I will concentrate on the situation at the
NSSDC but it must be recognized that many other institutions,
universities and other government agencies are in a similar

situation.

CURRENT AND FUTURE NSSDC ARCHIVE

The NSSDC archives and manages both digital and non-digital data. The
digital archive is stored on approximately 120,000 maghetic tapes with
the volume of over 6,000 gigabytes. There are over 4,000 data sets
that are supported with appropriately 250 new data sets being archived
per year. The most requested digital data sets are stored at the
NSSDC (comprising about 35,000 tapes) with the remainder of the
archive stored in the Federal Records Center (FRC) about 20 miles
away. In addition to the digital archive, the NSSDC has a photo or
film archive of over 2 million feet of film, 41,000 sheets of
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microfiche, and 39,000 microfilm roles. The charge for obtaining data
from the NSSDC is usually for replacement costs in materials and
supplies (example: a blank tape or equivalent is needed for one tapes

worth of archived data).

From the time it was established in 1967 until 1985 all requests for
NSSDC held data were in the form of letters or phone messages which
was consistent with the "offline" management of the data that was
employed. Requests for offline archived data typically takes 2 weeks
if the data is held locally at the NSSDC. If the needed data is in
the FRC, the request will take a month or more to be satisfied. This
situation is labor intensive and involves interacting with another
federal organization. Currently, the NSSDC must accumulate requests
for data stored in the FRC and makes two trips per month to obtain the
data.

In 1985 NASA was acquiring approximately 360 gigabytes of data per
year. Assuming both currently approved and most likely approved NASA
missions, the acquired data volume by 1995 will reach well over 2,400
gigabytes per day(l). This is a staggering rate. Figure 1 shows the
data volumes per scientific discipline that have been archived and are
expected to be archived at the NSSDC. As discussed above, the NSSDC
has currently about 6,000 gigabytes of data. The size of the archive
past 1988 is a projection and considers the arrangements being made
with the NSSDC and the missions that are currently approved. If this
projection holds true, then by 1995, the NSSDC will have over 28,000

gigabytes in its archive.

The physical space that the NSSDC has to manage is nearly full, both
locally and at the FRC. From the predicted amount of data to be
archived, as shown in Figure 1, the NSSDC must implement mechanisms to
store data on higher density media (by a factor of 5 to 10) and/or
implement data compression techniques. At the NSSDC, use of data
compression techniques as a routine mechanism to pack data on media

can only be a viable mechanism when it becomes accepted and is in wide
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spread use in the scientific community. This acceptance is occurring
(see section, Networking of AVHRR Data), but only very gradually.

ARCHIVE SAFE STORAGE

A national archive needs to have operational plans for insuring that a
natural disaster, such as fire, does not permanently destroy
irreplaceable data. For a data center, where most of the archive is
in digital form, then a copy of the data stored in another location

would be the best solution for safe storage of archived digital data.

In the case of the NSSDC, over the last 20 years, it has received data
for archiving from investigators at hundreds institutions across the
country. In this situation, the remote investigators retain the
original data with a copy sent the NSSDC. Due to budget constraints
and inadequate resources to provide a complete backup, the NSSDC's
disaster recover plan is to request a copy of the data from the
original producers. These plans are inadequate as a viable disaster
recovery plan since many of the investigators would not be able to
reproduce the data that is more than four or five years old for a
variety of reasons (ex., inadequate resources, older tapes written at
low density formats, etc). In addition, NASA's missions are now
moving toward facility instruments where the NSSDC must assume full
responsibility for the data being archived since it is coming from a
short lived project with resources that are usually just adequate to
keep up with the new incoming data with little or no reprocessing

possible.

Plans are now being devised at the NSSDC, that once in place, will
provide for a complete safe storage as a backup of the NSSDC digital
archive. With such large volumes of data to back up, a cost effective
solution requires an extremely dense media with a very small cost per
megabyte of storage, a high data transfer rate, and adequate data
compression schemes (preferably lossless) to further reduce the

volume. In this case, even thought scientists are reluctant to
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provide NSSDC with compressed data for distribution, there is little
argument against data compression techniques being applied in order to

provide for a cost effective backup of the entire digital archive.

As operational mass storage software and hardware systems mature,
optical tape would be a prime candidate as an archive backup. The
data write rates can be very large (100 MB/s) with a $3,000 cost per
reel containing 1 TB of data. Drives are estimated in the range of
$200,000 apiece. Another possible media is the digital videotape
cassettes which costs about $135 per cassette that can hold data up to
125 gigabytes. Recorders/readers are also in the $200,000 range.

Once again, these devices are just now in beta testing with commercial

units available within a year and little operational software.

ONLINE INFORMATION AND DATA SYSTEMS

There has been an explosion in the use of available communication
technology for the movement and access of mission data and
information. Many large universities and nearly every NASA center and
other government institutions that work with NASA data have relatively

high speed local area networks and many wide area network connections.

There are two major wide area NASA networks that are used extensively;
sPAN(2) and the NSN. SPAN contains over 2050 nodes in the United
States and is internetworked with over 6000 nodes in the U.S., Europe,
Canada, and Japan. Like SPAN, NSN is internetworked with other wide
area networks such as ARPANET and the NSFNET that can reach many
thousands of computers. In general, these wide area networks are of
relatively low speed but are serving a tremendously valuable service
for the remote users to gain access to space and Earth science
computer resources and to fellow researchers all across the country.
Although a modest amount of data is transmitted over the wide area
networks, it is not real-time (coming directly from a NASA orbiting
spacecraft). The bulk of the wide area traffic is of informational
purposes such as remote logon and mail.
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The NSSDC is responding to an ever increasing number of user requests
by putting more of the data and information about the data in its
archive online to electronic access. In this way, the NSSDC can
"remain open" past the normal working hours allowing scientists and
students to "browse" through the online information looking for an
important data set. The online data and information systems that are

currently operational at the NSSDC are shown in Table 1.

As will be discussed in the next section, the rapid access to selected
data through the NSSDC interactive systems is frequently requested.
Since it is not known ahead of time what sections of any one data set
will be requested, the NSSDC has loaded all the International
Ultraviolet Explorer (IUE) data sets online to accommodate user
demand. The data is available through the IUE request system. It is
important to note that NSSDC manages its archive offline. Storing all
the IUE data online was done with full project co-operation and to

gain valuable experience with highly requested online data sets.
IUE ONLINE EXPERIENCE

The NSSDC has loaded all the IUE data (in uncompressed form),
consisting of over 61,000 unique star images and spectra, in the NASA
Space and Earth Science Computer Center's IBM 3850 Mass Store(3),

The Mass Store device is managed by an IBM 3081 system and connected
to the NSSDC interactive VAX front ends by a high speed local area
network (called SESNET), as shown in Figure 2. An interactive system
on the NSSDC VAXs has been created that allows for a remote SPAN user
to logon and order IUE data from the electronic Merged Observer Log.
Once the exact data segment requested has been identified, the NSSDC
request coordinator networks the IUE data from the Mass Store through
the local area network and through SPAN to the target computer of the
requesting individual. This system became operational in November
1987 and by January 1988 requests were routinely serviced with this

system.
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In addition, requests for IUE data sent on magnetic tape are easily
handled by this system, saving the manual locating of the data. These
requests come to the NSSDC from letters, phone calls (not all our

users are on computer networks), or electronically.

Figure 3 shows the monthly averages of IUE images requested by
individuals (we also send large amounts of IUE data to other archives)
from 1979 to 1988. From 1979 to 1987, the only service the NSSDC
offered was an offline service resulting in a tape copy of the data
being produced and sent to the requestor. The bar graph also shows
the monthly number of IUE images in 1988 (averaged over the first four
months of that year) requested using the online data requesting and
electronic delivery system. As clearly seen, there is a dramatic
increase in the amount of IUE data requested in 1988 reaching
approximately 350 images/spectra per month. The 1988 requests have
come from many scientists at 13 institutions in the United States,
Europe, and Canada (locations serviced by SPAN).

Since there has been no new money from NASA Headquarters for increased
IUE data analysis, the results clearly show that the tremendous
increase in requested data is believed to be due to the convenience
this system provides to the user. The following factors are a major

part of the user convenience provided by this service:

- Data are loaded to the target system (no tape handling), -
Data arrives in the desired format;

- No replacement tape is needed to be sent to the NSSDC
(currently the network is a "free" service to the users);

- Rapid turnaround provide the desired data while the
scientists are interested.

To be able to use low rate communication networks such as SPAN

requires that the size of data requested is relatively small. The IUE

example is a good one since the data is managed by the stellar object

91



observed which in itself forms a small enough data subset that it can
be easily networked. The amount of time required to network an
observation is 2 to 15 minutes depending on the communication rate and

the load on the network.

The IUE example serves to illustrate that to better serve some of the
users, faster access to requested data is desirable than what the
NSSDC has been doing when the data resided offline on magnetic tape.

Many of the most requested data segments come from very large data
sets. Keeping large amounts of data online is expensive. Key
questions as to the management of the larger volumes of data being
archived and promoted to online status must be addressed within the
next few years. But if the IUE example is representative of what
users need, then to accommodate large amounts of data online, the

NSSDC will have to consider use of data compression techniques.

Even though the NSSDC may not compress the data that resides online
there are other uses of data compression/decompression techniques when
the use of low rate networks are employed to moved the data to a

remote location, as discussed in the next example.
NETWORKING OF COMPRESSED AVHRR DATA

Many universities gain access to the Oceanographic data being
collected at the University of Miami using SPAN. The University of
Miami routinely networks compressed data from the Advanced Very High
Resolution Radiometer (AVHRR) instrument onboard a polar orbiting NOAA
spacecraft. The AVHRR data is received in real-time are quickly
processed (stripping out the infrared portions), compressed, and
transmitted to the University of Rhode Island via SPAN where it is
decompressed and remapped into a standard set of projections used for
several real-time ship activities such as cruise support and chart
generation. These images are also networked to Harvard University for

their Gulf Stream predication models. 1In this example, a Lempel-Ziv
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compression algorithm is used.
SUMMARY

If NASA is going to fly future missions which will produce several
orders of magnitude more data than in the past, then it needs to
continue to develop better techniques and facilities for data
management, data storage and data distribution if it has a chance of
preserving and providing the continual extraction of science from its
archived data in a timely manner. I predict that as data compression
techniques become accepted by the scientific community their
implementation at the NSSDC and other data centers will be a
necessity. Data compression should be considered an important element

of data management for very large data bases.

Access 1s one of the most important aspects necessary for the proper
management of very large data bases. It is projected that the NSSDC
will be inundated with data, quadrupling its archive by 1995.

Although mass store technology has progressed considerable and must be
employed in the managing of very large data bases, it appears that
data compression will also play a significant role by providing more

data online in conjunction with mass storage capability.

In a similar way, the technology of wide area computer networking has
grown considerably. If the speeds of wide area communication networks
don't keep up with the demand for the electronic transfer of data,
then data compression techniques will also be necessary to implement

for data that is transferred over wide area networks.

With respect to the above capabilities, we are somewhat dependent on
the ability of the data producers to use the new mass storage
technology, the wide spread use of very high speed networks and the
acceptance and wide spread use of data compression techniques by the

scientific community.
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However, the use of lossless data compression techniques as part of
the implementation of a complete backup of a very large archive is a
viable and, perhaps, necessary step for a cost effective way of

preserving irreplaceable digital data archive.
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TABLE 1
NSSDC ONLINES SYSTEMS

SCIENCE
DISCIPLINE SERVICE INFORMATION DATA #
All
Master Directory X
Astrophysics
JUE Requests System X X *
ROSAT Info. Manage. Sys. X
Astronomy Catalog Sys. X X
Starcat with SIMBAD acc. X X
Atmospheric Science
NASA Climate Data System X X
Ozone TOMS data X X
Land Sciences
Crustal Dynamics X X
Pilot Land Data Systems X
Space Plasma Physics
Central Online Data Dir. X
Oomni Solar Wind Data Sys. X X
Plasma and Field Models X X +
Coordinated Data Ana. WK. X X
General
SPAN-Network Info. Center X
NOTES:

# Oonly partial data sets are available
* All available data is online

+ Only software 1is being distributed
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ORBITAL MANEUVERING VEHICLE
TELEOPERATION AND VIDEO DATA COMPRESSION

Steve Jones
Marshall Space Flight Center

ABSTRACT

This presentation describes the Orbital Maneuvering Vehicle (OMV) and
concepts of teleoperation and video data compression as applied to OMV

design and operation.

The OMV provides spacecraft delivery, retrieval, reboost, deboost and
viewing services, with ground-control or Space Station operation,
through autonomous navigation and pilot controlled maneuvers. The
Flight Vehicle (FH) includes a payload/target grapple fixture and a
three-point attach mechanism for spacecraft servicing. On-board
propulsion is provided by control system (RCS) thrusters, and a cold-~
gas thruster system. The capability is provided for automatic, on-
board attitude control and navigation functions. Communications
systems are comprised of S-band RF command, telemetry, and compressed
video data links through the TDRSS and GSTDN networks.

For target viewing and/or docking missions, the OMV navigates
autonomously to the vicinity of the target vehicle. The pilot then
assumes control of the FV for final maneuvers by observing control-
console video monitors and commanding on-board thrusters, through the
use of hand controllers at the console. The commands are routed to
the FV through TDRSS (or GSTDN), and compressed video (from on-board
cameras) is returned through the same network to the pilot. The total
round-trip delay time is presently estimated to be 2-3 seconds.

The control console video monitors display a monochrome image at an

update rate of five frames per second. Depending upon the mode of

operation selected by the pilot, the video resolution is either 255 x
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244 pixels, or 510 x 244 pixels. The system compresses the output of
one camera into a digital data stream at a rate of 972 kbps (kilobits
per second), or can interleave two camera outputs simultaneously into

one data stream at 486 kbps per camera.

Since practically all video image redundancy is removed by the
compression process, the video reconstruction is particularly
sensitive to data transmission bit errors. Concatenated Reed-Solomon
and convolution coding are used with helical data interleaving for
error detection and correction, and an error-containment process
minimizes the propagation of error effects throughout the video image.
Video sub-frame replacement (using the appropriate sub-frame in the
previous video frame) is used, in the case of a non-correctable error

or error burst, to minimize the visual impact to the pilot.
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VIDEO REQUIREMENTS FOR MATERIALS PROCESSING EXPERIMENTS
IN THE SPACE STATION U.S. LABORATORY

Charles R. Baugher
Space Science Division

Marshall Space Flight Center
ABSTRACT

Full utilization of the potential of the materials research on the
Space Station can be achieved only if adequate means are available for
interactive experimentation between the science facilities and ground-
based investigators. Extensive video interfaces linking these three
elements are the only alternative for establishing a viable relation.
Because of the limit in the downlink capability, a comprehensive
complement of on-board video processing, and video compression. The
application of video compression will be an absolute necessity since
it's effectiveness will directly impact the quantity of data which
will be available to ground investigator teams, and therefore their
ability to review the effects of process changes and the experiment
progress.

Traditional methodology in materials research investigations has
evolved amid close investigator interaction with samples and processes
in ground-based laboratories. Effective transition of the research
discipline to the space-based laboratories being designed for the
Space Station will require a means of continuing this orthodox
approach and expanding it to encompass relatively large teams of
collaborating scientists at diverse locations. Clearly, the only
means of implementing the requirement will be through an efficient and
imaginative use of video communications between the Space Station
experiments and investigator laboratories. The requirement for
comprehensive video presentations of experiment processes and status

is further accentuated by the need for on-board crew interaction with
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experiments which are otherwise extensively contained to avoid the

possibility of accidental exposure to noxious processes.

Although it is seemingly a modest requirement, the actual
implementation of adequate video monitoring of the Space Station
materials processing experiments is complicated by the number of video
sources in the planned facility (of the order of ten), their variety,
and the several cases in which experiment scientific return will be
directly commensurate with the available resolution and/or frame rate.
The aggregate bandwidth necessary to freely transfer the raw video
information to the ground far exceeds the science allocation form the
total 300 Megabits per second being planned for the Station
communication link through the Tracking and Data Relay Satellite
(TDRS) .

To bring the requirement into compliance with the reality of the
restrictions, it is apparent that special measures must be implemented
within the Station internal video and data management system. An
analysis of the science video in terms of a realistic operation model
provides guidance on the subsystems necessary to effectively manage

the science requirements.

The video from the experiments will range from single frame, high
resolution images of the status of crystal growth processes; through
requirements involving manipulation which can be readily serviced by
the NTSC "media standard"; to a requirement for state-of-the-art in
frame rate and resolution to capture the details of certain
combustion, fluid flow, and very rapid crystallization phenomena. 1In
general, rapid transmission to the ground is desirable for analysis
purposes; however, only the manipulation type of operations will
require a near "real-time" type of 1link. Since the experiment-to-
ground delay is not generally of direct importance to the science
return, it is possible to make effective use of on-board data
buffering and subsequent transmission during periods of opportunity.

Indeed, a portion of the video data will be of interest only when

120



analyzed in conjunction with the returned samples and can, therefore,
be archived at the Station for return with the regular supply

missions.

Since the Station will also serve as an active research facility on it
own, manned by a scientific crew able to render judgments and
synthesize observation, there will be a requirement for on-board
interaction with the video data. This interaction will require a set
of general purpose video utility tools such as freeze frame, data
overlays, and appropriate frame conversion capability. Inclusion of
these tools will also alleviate the downlink congestion since
scientific crew members can interdict or pre-sort observational data
which does not satisfy the experiment requirements. Collectively, the
requirements dictate that an experiment dedicated video processing
facility will be mandatory as an integral part of the Space Station

Laboratory.

However, even with the inclusion of an extensive video processing,
recording, and data management capability, adequate operation of the
materials processing facilities will likely be limited by the data
downlink capability. In some cases this limit will be incurred
because adequate buffer requirements are beyond the current state-of-
the-art and data will be generated faster than can be reasonably
transmitted to storage. 1In other cases, the limit will occur because
experiment reiteration rates will be fixed by the overall available
through-put rate to the ground. With regular supply missions between
the station and the ground scheduled for 90 day centers, modest
generation rates can overwhelm archival storage capability and one or
two continuous video sources would saturate the available downlink

transmission bandwidth.

Clearly, an aggressive utilization of video compression is indicated
for essentially all of the video data from materials experiments, and
it is likely that the data will prove responsive to the application of
the art. 1In many of the cases the application will be trivial since
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the video images will be of interest only where there are changes in
slowly varying processes in a small portion of a large field.

Manipulative operations occupy the middle ground in the hierarchy of
difficulty. 1In others, such as the details of rapid motion in very
low contrast fields, the application will be challenging if it is to

prove useful.

In addition to the link between the Station complex will also
influence the capability of the overall system to service the video
requirements of the science experiments. At the conclusion of the
Space Station definition phase these internal rates appeared to be
unduly restrictive and tended to establish further restrictions on
experiment operations. Should cost considerations preclude a
substantial increase in internal data rates, the application of video
compression will become an even more critical factor in community. 1In
this case, the burden of compression will fall on individual
experiments and will likely be accomplished in a much more severe
environment. Compression will be implemented within the restricted
space of experiment facilities and will be pushed to the limit of its
capability to reduce bandwidth requirements. 1In this case, it is
likely that its full application will only be realized after an
evolutionary period involving cooperative research between the two

communities of investigators.
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AN OVERVIEW OF REFERENCE USER
SERVICES DURING THE ATDRSS ERA

Aaron Weinbergl
Stanford Telecommunications, Incorporated

ABSTRACT

The Tracking and Data Relay Satellite System (TDRSS) is an integral
part of the overall NASA Space Network (SN) that will continue to
evolve into the 1990's. As currently envisioned, the TDRSS space and
ground segments will continue supporting the telecommunications and
tracking needs of low-earth-orbiting (LEO) user spacecraft until the
late 1990's. Projections for the first decade of the 21st century
indicate the need for an SN evolution that must accommodate growth in
the LEO user population and must further support the introduction of
new/improved user services. A central ingredient of this evolution

is an Advanced TDRSS (ATDRSS) follow-on to the current TDRSS that must
initiate operations by the late 1990's in a manner that permits an
orderly transition from the TDRSS to the ATDRSS era. In addition, the
ATDRSS must interface with the remainder of the SN elements in a
manner that simplifies user access to SN resources, while maximizing

user flexibility in satisfying its mission requirements.

NASA is in the process of developing an SN/ATDRSS architectural and
operational concept that will satisfy the above goals. To this date,
an SN/ATDRSS baseline concept has been established that provides users
with an "end-to-end data transport' (ENDAT) service characterized by

the following fundamental features:

- A friendly interface with the SN that permits users to

obtain services without in-depth knowledge required as to

1Supported under contract by NASA/Goddard Space Flight Center
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"how ATDRSS works".

A transition from TDRSS to ATDRSS that is transparent to
existing TDRSS users from an operational perspective, but

leads to enhanced communications/tracking performance.

Multiple grades of service that provide users with the
flexibility to select an end-to-end service quality
(including error-free operation) tailored to the specific

mission requirements.

Growth in the quantity of communication channels,
commensurate with the growth in the user population.

The provision of improved space-to-space RF link efficiency,
thereby making ATDRSS support attractive to small users that
are currently burdened by the LEO-to-TDRS propagation path.

The introduction of data rates that exceed 300 Mbps, to
permit satisfaction of evolving scientific requirements that
may, for example, rely on the availability of digitized
high-speed, high-definition TV.

The application of advanced technologies/techniques that
automatically mitigate external phenomena (such as RFI),
thereby minimizing service schedule constraints and, hence,
maximizing service availability.

Within the context of this baseline, additional service options are

currently under investigation that can be readily incorporated with

little or no perturbation to the baseline concept. One example is a

user capability for autonomous LEO spacecraft navigation. A second

example is the introduction of a near-real-time user access feature

that potentially alleviates the existing long-lead scheduling process.
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On the other hand, potential user services have been identified that
are not supportable by the baseline. Most notable here are closure of
the zone-of-exclusion (ZOE) and the distribution of data directly

from the ATDRS to user premise terminals outside of White Sands. The
baseline concept intentionally excludes these features because, to
this date, no user requirement has been identified that justifies the

associated increase in complexity and cost.

This paper provides an expanded description of the baseline ENDAT
concept, from the user perspective, with special emphasis on the
TDRSS/ATDRSS evolution. The paper begins with a high-level
description of the end-to-end system that identifies the role of
ATDRSS; also included is a description of the baseline ATDRSS
architecture and its relationship with the TDRSS 1996 baseline. Other
key features of the ENDAT service are then expanded upon, including
the multiple grades of service, and the RF telecommunications/tracking
services to be available. The paper concludes with a description of

ATDRSS service options.
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REFERENCE ATDRSS ARCHITECTURE
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NASA GROUND COMMUNICATIONS

John Roeder
NASA Headquarters

ABSTRACT

As part of the Communications Requirements and Constraints, NASA's two

major Ground Data Networks were briefly described.

The NASA Communication Network, called NASCOM, is the worldwide
operational telecommunications system which interconnects as the
tracking and telemetry acquisition sites, launch areas, mission and
project control centers, data capture facilities, and network control
centers in support of space flight. Currently, the NASCOM network
contains over 2 1/2 million circuit miles using satellite,
terrestrial, and submarine cable leased links; more than 630 circuits
connect 139 domestic and foreign sites. The network is engineered
and controlled at the Goddard Space Flight Center (GSFC) with major
switching centers in Australia, Spain, and at the Jet Propulsion

Laboratory (JPL) in California.

All kinds of communications traffic is supported, from low rate
digital data and voice to narrow and wide band analog and digital at
rated up to tens of megabits. NASCOM is transitioning to an all
digital network with wideband links which utilizes improved technology

in the competitive market place.

For the Space Station era, NASCOM plans are set for higher data rate
service (up to 300 Mbps) utilizing data packet switched technology
(ccsDS standards). Increased use of fiber optics is expected in a

much more diverse network topology.

The second major ground network, the Program Support Communications
Network (PSCN), interconnects all NASA Centers and NASA contractor
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locations for intercenter non-operation communications. The primary
functions are to transport voice, video, data and facsimile
information for intercenter coordination, and to provide user access
to space science and applications data bases. Currently, the PSCN
contains almost 400 thousand circuit miles using satellite and
terrestrial links, supporting many teleconference rooms and high and
low speed FAX stations and a packet switched at 35 locations. This
network is engineered and managed at Marshall Space Flight Center

(MSFC) .

Individual data rates covered are from 110 bps to 56 Kbps, 388
different types of computers and terminals are accommodated, and more
than 3000 mail boxes are provided for NASA's TELEMAIL network. A
computer networking subsystem allows resource sharing among the four
aeronautics and space technology centers scientific mainframe

computational centers.

For the Space Station era, PSCN plans address the significant increase
in forecast requirements for science data distribution and access to
the Numerical Aerodynamics Simulator, and increased use of the Video

Teleconference Systemn.

For communications in general, a recent NASA life cycle cost analysis
predicts total data volume for NASA science missions to increase as
much as two orders of magnitude, by the year 2000. Obviously, costs
for telecommunications will not be allowed to keep pace, so creative
concepts such as data compression and information reduction are

sorely needed.
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"DEEP SPACE COMMUNICATIONS, WEATHER EFFECTS,
AND ERROR CONTROL"

Edward C. Posner
Jet Propulsion Laboratory

. ABSTRACT

Deep space telemetry is and will remain signal-to-noise limited and
vulnerable to interference. We do all we can to increase received
signal power and decrease noise. This includes going to Ka-band (32
GHz down) in the mid-1990's to increase directivity. This is in spite
of the increased difficulty of maintaining surface accuracy, pointing
the spacecraft and ground antennas, and accommodating to weather
uncertainty. The effects of a wet atmosphere can increase the noise
temperature by a factor of 5 or more, even at X-band (8.5GHz down),
but the order of magnitude increase in average data rate obtainable at
Ka-band relative to X-band makes the increased uncertainty a good
trade. The 32GHz frequency is likely to be the highest frequency used
operationally from deep space in the next 15 to 20 years. Lowbit
error probabilities required by data compression are available both
theoretically and practically with coding, at an infinitesimal power
penalty (.05-.2dB) rather than the 10-15dB more power required to
reduce error probabilities without coding. Advances are coming
rapidly in coding, as with the new constraint-length 15 rate 1/4
convolutional code concatenated with the already existing Reed-~Solomon
code to be demonstrated on Galileo. These advances will get NASA
ready for the day when high-compression-ratio telemetry will require
107% to 1072 bit error probability. 1In addition, high density
spacecraft data storage will allow selective retransmissions, even
from the edge of the Solar System, to overcome weather effects. 1In
general, deep space communication has been able to operate, and will
continue to operate, closer to theoretical limits than any other form
of communication. These include limits in antenna area and

directivity, system noise temperature, coding efficiency, and
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everything else. The deep space communication links of the mid-90's
and beyond will be compatible with new instruments and compression
algorithms and represent a sensible investment in an overall end-to-

end information system design.
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VECTOR QUANTIZATION

Robert M. Gray
Information Systems Laboratory

ABSTRACT

During the past ten years Vector Quantization (VQ) has developed from
a theoretical possibility promised by Shannon's source coding theorems
into a powerful and competitive technique for speech and image coding
and compression at medium to low bit rates. In this survey, the basic
ideas behind the design of vector quantizers are sketched and some
comments made on the state-of-the-art and current research efforts.

INTRODUCTION

VQ can be thought of as the vector extension of Pulse Coded Modulation
(PCM) wherein real vectors instead of real scalars are converted into
digital representations which in turn can be used to produce a
reproduction of the original signal. The goal, of course, is to
produce a digital representation of the signal which can be
communicated on a digital communication channel or stored in a

digital medium. Representing analog data digitally introduces
distortion, and hence a major design goal is to minimize the
distortion given constraints on communication or storage capacity and
complexity. The vectors to be digitized may be a collection of
consecutive samples from a continuous waveform, rectangular subblocks
of an image intensity or density, three dimensional vectors consisting
of, say, two-by-two squares of pixels three frames deep (or twelve
pixels in the vector), or they may be feature or parameter vectors
extracted from the data which represent its important attributes, such
as Fourier transformed vectors or the Linear Predictive Coded (LPC)

representation of a speech signals.
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Although Shannon's source coding theorems imply that performance
improvement can always be obtained by coding vectors instead of

(1’2’3’55’62), the most popular systems for analog-to-digital

scalars
conversion and data compression perform the quantization operation
only on scalars, although they often effectively operate on vectors by
imbedding the quantizer in a feedback loop (as in predictive
quantization) or by first performing a linear transform on the data
(as in transform coding). While such systems have the advantage of
simplicity, they are necessarily suboptimal in the Shannon sense.
Furthermore, the definition of "simplicity" has been enormously
extended with modern circuit design and implementation techniques:

DSP chips and VLSI have rendered feasible algorithms that were

considered absurdly complicated only ten years ago.

In addition to the complexity issue, another impediment to the use of
VQ systems has been the lack of design algorithms. Unlike the dual
problem of channel coding or error control coding, quantization is
fundamentally nonlinear and the algebraic approaches successful in
error correction are of little help in the digitization problem.
Since the middle of the last decade, a variety of design techniques
and tricks have been developed for VQ and real time hardware has been
designed to perform sophisticated variations of these systems. This
paper presents a brief overview of the fundamental design principles
of the basic VQ structure and its variations. Deeper discussions of
many of the issues and systems may be found in tutorial
articles(4’5’6). A thorough development of VQ systems may be
found (7).

VQ is a form of "lossy" data compression in contrast to "lossless"
data compression or noiseless coding. Noiseless codes are perfectly
invertible and necessarily variable length codes. The most popular
noiseless coding algorithms are Huffman coding, Rice codes, Lempel-Ziv
Codes, and arithmetic codes(2’55-61). These codes are in common use,
especially for the compression of computer programs and data files

which cannot tolerate errors. Noiseless compression is usually
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required in such situations where the compression system must be
designed without any knowledge of the structure or end use of the
original digital signal. On the other hand, any system which begins
with an analog signal (such as microphone, camera, or analog sensor
output) and produces a digital output is necessarily a lossy code as
a continuous voltage cannot be reproduced perfectly from a digital
representation. Given that all such analog-to-digital conversion
systems are lossy, the goal of any such system is to provide the best
quality (minimum loss) within the constraints of the system. As
unpleasant as purposefully introducing distortion into a
representation might sound to a user, it is preferable to the
potential large insertion of uncontrolled distortion or the complete
loss of the data caused by overwhelming available digital
communication or storage capacity. In other words, if you are
generating gigabits but the available communication channel only takes
megabits, then you either compress to the best acceptable quality or
you may get no useful data at all. VQ is an approach to minimizing
the loss for a given communication or storage rate. It is based on
the Shannon theory approach of defining and minimizing an objective
distortion criterion for a given code rate. The minimization is
accomplished using algorithms developed in communications, statistics,

and cluster analysis. Next two sections summarize the basic approach.

MATHEMATICAL MODELS

The mathematical model for an analog-to-digital conversion system or
for a data compression system is a source code subject to a fidelity
criterion. A source {X(n):;n=1,2,...) is a discrete time signal which
in general is vector-valued. Let A denote the alphabet or collection
of possible values of X(n)., for example, A may be k dimensional
Euclidean vector space. For convenience we assume that the signal is
a statistically "nice" process (e.g., the law of large numbers holds).

The basic results extend to more general processes.

A code in the general sense is a mapping of the input sequence {X(n))}
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into a binary sequence (the encoder) together with a mapping of the
binary sequence into a reproduction sequence {Y(n))} (the decoder).

(We assume the encoded sequence is binary for convenience, in general
it need only be from a finite alphabet.) The rate (or resolution) R
of the code is the number of bits or binary symbols transmitted or
stored per source symbol. 1In general this rate can be fractional,
although in some examples it is useful to focus on integral values. A
block source code is a code where each input block or vector (X(1lk),
X(1lk+1l),...,X((1+1)k-1)) is mapped into its binary code word in a way
that does not depend on past or future actions of the encoder. The
decoder is required to act in a similar fashion independently of past
and future vectors. A block source code is also called a (memoryless)
block quantizer or vector quantizer. The qualifier "memoryless"
reflects the fact that such codes operate on vectors in a memoryless

fashion (although the clearly have memory with respect to the
individual symbols within the vectors). We will consider codes that
have memory, but the focus of Shannon theory is on memoryless codes.

To measure the performance of a code, we assume a non-negative
distortion measure d(x,y) which measures the cost of reproducing any x
in A by some y in a reproduction alphabet B, which may or may not be
the same as A. The performance is measured by an average distortion,
where the average may be a long term time average or an ensemble or

probabilistic average. For convenience we represent both by

1 N
Ay =E[ - 2 4x(i), Y(i)}
N i=1

where the expectation E can mean either a probabilistic average or a
time average (which can be viewed as a special case of a probabilistic
average in which every sample vector in a training sequence of length
L has probability 1/L. Ideally a distortion measure should be
analytically tractable, computable, and subjectively meaningful. 1In
practice, these attributes must be balanced and a variety of choices

exist.
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Shannon's converse coding theorem and its generalizations imply that
for any code for which these definitions make sense, A can be no
smaller than the distortion-rate function D(R) of the source and
distortion measure evaluated at rate R, a function defined by an
information theoretic minimization which can be computed analytically
or numerically or bounded for many interesting sources. Shannon also
showed that performance arbitrarily near to D(R) could be achieved
with block source codes, another name for VQ. Unfortunately,
however, the proof of this result provided no indication of how to
actually design a good code. This we explore shortly.

MEMORYLESS VECTOR QUANTIZATION

As described in the previous section, a memoryless vector quantizer or
block quantizer is in the Shannon terminology a length k block source
code subject to a fidelity criterion; that is, it is a pair of
mappings, an encoder E which maps k-dimensional input vectors X into
binary vectors which we denote by their equivalent decimal
representation j = 1,2,...,M, and a decoder D which maps those binary
vectors into reproduction vectors. For simplicity we assume that the
binary vectors have dimension K and hence that the rate of the code is
R = K/k bits per input symbol. To describe the operation of a block
code define the code book C= ({y (j) = D(3), j = 1,2,...,M} as the
collection of all possible reproduction vectors, and the code
partition P = { P(3j):j=1,...,M)}, where P(j) is the collection of all

input vectors which are encoded into the binary vector j. The
quantizer mapping Q( x )is defined as D(E(x)), that is, the overall
action of the code. The term VQ is used to refer to combination of

the encoder and decoder or, equivalently, the overall mapping Q.
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The average distortion resulting from applying a vector quantizer to a
source can be written using conditional averages as

E [d(X,Y(j))IXeP(j)1P(XeP(F))

P
N
M2

J

Recall that the expectation and the probabilities may come either from
a probabilistic model or (more commonly) from a training sequence of
typical data. A vector quantizer is optimal if it yields the smallest
possible A over any gquantizer with the same dimension and resolution.
The above representation easily yields two necessary conditions for a
VQ to be optimal.

The Nearest Neighbor (Minimum Distortion) Condition

A necessary condition for a VQ to be optimal is that the encoder be
optimal for the decoder. This is equivalent to the following: If the
decoder yields a code book C, then the encoder must be a nearest

neighbor or minimum distortion mapping that satisfies

E(x) =] only if d(x,y(3) ) < d(x,y(i)), all i#J
Thus given a decoder or, equivalently, a code book, the optimal
encoder is the one which searches the entire code book and selects the

binary vector corresponding to the minimum distortion available

reproduction vector.
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The Centroid Condition

Define the centroid of a set S with respect to a distortion measure d
and a probability distribution on X = (X(1), ... ,X(N)) by

cent(s) = min~1 E[d(X,Y)|Xes]
Y

A necessary condition for a VQ to be optimal is that the decoder be
optimal for the encoder. This is equivalent to the following: If the
encoder implies a partition {(P(j))}, then the optimal decoder satisfies

D(j) = cent( P(j)): all j.

For example, in the case of mean squared error, the centroid is simply
a conditional mean given that the input was mapped into the binary
vector j. This condition states that given an encoder, which can be
considered as a partition of the input vector space, then the optimum
decoder is the one which maps each received binary vector into the
centroid of the region of the partition which is encoded into that
binary vector. Note that unlike the encoder condition, this condition
requires knowledge of the input signal distribution, knowledge that
can come from a mathematical model or from a training sequence.

MEMORYLESS VQ DESIGN

Because of the nearest neighbor condition, a VQ 1is completely
described by its code book. The two properties together provide a
means of improving any given code book C:

The Lloyd Iteration

1. Given a code book C, form a nearest neighbor partition
{(P(3)).
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2. Given a partition ({P(j)}, form a new code book C(C'=
{cent(P(j)): Jj=1, ... , M}.

It is obvious that the above operation produces a new code book that
is better than (at least no worse than) the original code book since
each step can only improve performance. These properties were first
observed for the mean squared error and scalar quantizers by
Lukaszewicz and Steinhaus(B) and were independently found shortly
thereafter by Lloyd(g), who developed an iterative algorithm for
designing scalar quantizers with a mean squared error based on
repeated use of the iteration. The basic idea extends immediately to

vectors and is called the generalized Lloyd algorithm:

The Lloyd VQ Design Algorithm

0. Given an initial code book C(0) and a threshold 4.
Set A(0) = huge. Set k = 1.
1. Use the Lloyd iteration to produce a new code book C(k) from
C(k-1). 2. Evaluate the distortion

Ax = E(min 4d(X,Y))

y
If
é}_(:l‘_.._é.lf < 9
Ak -

quit. Otherwise replace k by k+1 and continue.

In most practical applications, one does not have a probability
distribution, but does have a training sequence of data. In this case
the algorithm can be run on the empirical distribution which assigns a
probability of 1/L to each of L samples in the training sequence. 1In

this case the expected distortion is replaced by a sample average.
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Theorems can be proved to the effect that if the training sequence is
long enough, the VQ designed will be close to that which would have

been designed had the distribution been known(lo’ll).

This algorithm was developed in the statistical literature under the

(12)

name of the k-means algorithm by MacQueen and was first applied

to vector quantization in the two dimensional case with a mean squared

(13)

error by Chen The algorithm was extended to general vector

quantization with a variety of distortion measures by Linde, Buzo, and

(14)

Gray who computed centroids for a variety of distortion measures

and applied the algorithm to speech waveform and voice compression.

A remaining issue is how to design the initial code book, which is in
itself a code design problemn. We now next describe several such
techniques. In fact, these techniques can be used as an alternative
to the Lloyd algorithm for designing a complete code, but such code
books can always be improved by subsequent application of the Lloyd
algorithm.

Random Coding

Perhaps the simplest conceptual approach towards filling a code book
of M code words is to randomly select the code words according to the
source distribution, which can be viewed as a Monte Carlo code book
design. The obvious variation when designing based on a training
sequence is to simply select the first M training vectors as code
words. If the data is highly correlated, it will 1likely produce a
better code book if one takes, say, every Nth training vector. This
technique has often been used in the pattern recognition literature
and was used in the original development of the k-means technique by

(12). One can be somewhat more sophisticated and randomly

MacQueen
generate a code book using not the input distribution, but the
distribution which solves the optimization problem defining Shannon's
distortion-rate function. 1In fact, the Shannon source coding theorems

imply that such a random selection will on the average yield a good
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code. Unfortunately, the code book will have no useful structure and

may turn out to be quite awful.

Observe that here "random coding" means only that the code book is
selected at random: once selected it is used in the usual (nearest

neighbor) deterministic way.

Pruning

A variation on the above use of a training sequence to populate a code
is to form a code book recursively as follow: Put the first vector in

the training sequence in the code book. Then compute the distortion
between the next training vector and the first code word. If it is
less than some threshold, continue. If it is greater than the

threshold, add the new vector to the code book as a codeword.
Continue in this fashion: With each new training vector, find the
nearest neighbor in the code book. If the resulting distortion is not
within some threshold, add the training vector to the code book.
Continue in this fashion until the code book has enough words. This

technique has been used in the statistical clustering literature(ls).
Product Codes

In some cases a product code book may provide a good initial guess.
For example, if one wishes to design a code book for a k~dimensional
vVQ with M = sz code words for some integer R, then one can use the
product of k scalar quantizers with 2R words each. Thus, if gq(x) is a
scalar quantizer, then Q( x(1), ... , X (k))= (g ( %(0)), ... , 4(x
(k)), the cartesian product of the scalar quantizers, is a vector
quantizer. This technique will not work if R is not an integer. 1In
general other product structures can be used, e.g., one could first
design a one dimensional quantizer g from scratch (perhaps using a
uniform quantizer as an initial guess). One could then use (q( x (0)
g( x(1)) as an initial guess to design a good two~-dimensional

14

quantizer Q(x(0), x(1)). One could then initiate a three dimensional
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VQ design with the product (g( x(0)), Q( x(1), x(2) )) as an initial
guess. One could continue in this way to construct higher dimensional

quantizers until the final size is reached.
Splitting

Linde et al. introduced a technique that resembles the product code
initialization in that it grows large code books from small ones, but
differs in that it does not require an integral number of bits per
symbol(l4). The basic idea is this: The globally optimal rate 0 code
book of a training sequence is the centroid of the entire sequence.
The one code word, say w(0), in this code book can be "split" into two
code words, w(0) and w(0)+d, where 4 is a vector of small Euclidean
norm. This new code book has two words and can be no worse than the
previous code book since it contains the previous code book. The
Lloyd algorithm can be run on this code book to produce a good
resolution 1 code. When complete, the training sequence can be
divided into two smaller training sequences (one for each of the two
binary code words). For each of these sub-training sequences and the
corresponding single reproduction vector we can repeat the design
process: each of the code words in the new code book is split, forming
an initial guess for a rate 2 bit code book, and the Lloyd iteration
is run to convergence, producing a binary code book for the
corresponding sub-training sequence. One continues in this manner,
using a good rate r code book to form an initial rate r+l code book by
splitting. This algorithm provides a complete design technique from
scratch on a training sequence based on a training sequence. Another
approach to splitting is an application of the "greedy" decision tree
: Instead of splitting every node in a given level or
depth of the tree together, split one node at a time by only splitting
that node contributing the 1largest distortion to the overall

‘distortion. 1In other words, each time the "worst" node is split. If

a particular branch reaches the final permitted depth of the tree, it
is then no longer permitted to split. This technique was suggested

for code design in(®) ang again provides a means of building a code
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book from scratch. As we shall see, these designs provide a useful
tree structure to the VQ that can be exploited for fast encoding. Yet
another alternative is to begin with, say, a random code. Each new
training vector is then associated with one of the M current code
words and the training vector is added to a corresponding cluster or
group. The code word for that group is then replaced by the centroid
of all training vectors in the group, including the new addition.
This is in fact the way the original k-means algorithm operated(lz).

Pairwise Nearest Neighbor Merging

An alternative scheme for producing an initial guess is to begin by
considering every member of the training sequence as a cluster. At
each step one chooses a pair of two clusters and merges them by
grouping the vectors in each in a new common cluster and assigning the
new cluster its centroid as a code word. One can choose the pair that
provides the best possible change 1in average distortion or

approximately so(63’64).

We close this section by observing that in place of the Lloyd
algorithm, one can also iteratively design VQ code books by using

standard gradient search algorithms(ls).

CONSTRAINED MEMORYLESS QUANTIZERS

A serious problem with an ordinary VQ is that its complexity and
memory dgrow exponentially with resolution. Although the general
structure of such searches is amenable to implementation using VLSI

(17’18), any reduction in search complexity permits

systolic arrays
better performance at a given resolution. In the special case of mean
squared error fidelity criteria, there are a variety of tricks that
can be used to reduce the complexity of full searching of arbitrary

(19). More generally, however, the easiest means of

code books
reducing search complexity is to impose additional structure on the

code book in order to permit rapid searches for nearest neighbors or
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almost-nearest neighbors. The resulting loss of optimality may be

compensated by the reduced implementation complexity. This can
provide higher quality for a given rate and complexity, e.g., by
permitting 1larger vector dimensions. Variations of the Lloyd

algorithm can be run in order to produce a good code having the
desired structure. Some of the code structures that have been studied

are mentioned below:
Tree-Searched VQ

In a tree-searched VQ the full search of available codewords is
replaced by a suboptimal tree search. The codeword is selected by a
sequence of binary decisions instead of a single large search.
(20'54’21'22’19'63’64). The advantage is that the complexity of the
search will be 1linear in rate instead of exponential in rate. A
disadvantage is that general algorithms providing good suboptimal
searches for general codebooks are not known. A classical problem in
computer science is to find fast nearest neighbor tree searches for
unstructured code books. If, however, the code book is constructed
with an eventual tree search in mind (a freedom not always possible in
the computer science applications), then good design algorithms do

exist, as considered next.
Tree-Structured VQ

A tree-structured vector quantizer (TSVQ) is an example of a tree-
searched code where the codebook itself is forced to have a tree
structure and hence the tree search algorithm is natural. In
particular, the encoder makes R binary distortion computations and

(NR) distortion

comparisons instead of a single search requiring 2
computations. The first tree-search and tree-structured codes were
designed by a variation of the splitting algorithm of VQ design: Use
the splitting algorithm to design a complete code book and do not run
the Lloyd algorithm on the final complete code book. Instead retain

the entire tree used in the design, that is, all of the binary code
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books and the order in which they are used. This provides the TSVQ
which is encoded by finding the minimum distortion path through the R
layers of the tree; that 1is, one makes a sequence of R minimum
distortion comparisons using a sequence of binary codes. After the
final selection one achieves a terminal node (leaf) of the tree, which
corresponds to the final code word. The decoder need only have the
final code book and is a table lookup as before. A TSVb is
suboptimal because of its constrained structure, but it has two
important advantages: It has low complexity and a fast encoder in
comparison with an ordinary VQ since it needs to make only R binary
comparisons instead of 2R comparisons for a code book of size 2R. 1In
addition, the code has a nice successive approximation property in
that each additional bit in the code word provides increased fidelity
of the reproduction. This is a useful property, for example, in
systems where the rate may be changed due to available communication
channel capacity or where the communication 1link is slow and it is
useful to get ever better quality reproduction as additional bits

arrive.
Multistep VQ

Multistep VQ is a special case of tree-searched VQ where the same code
book is used at all nodes at a given depth of the tree. This is
usually accomplished by coding an error or residual produced by
encoding the original signal wusing the code books previously
encountered in the tree. For example, the first level does a coarse
quantization of the input vector. The second level quantizes the
difference of the original vector and the first level reproduction.
The second 1level reproduction is formed by adding the first 1level
reproduction to the second level error reproduction. The third level
then quantizes the error resulting in the second level reproduction,

and so on(24).

218



Hierarchical VQ

A VQ encoder can be constructed with a hierarchical structure, either
by using long term parameter estimates to choose short term code
or by using a sequence of ever longer dimension table

lookups with a fixed code book size(26).

Product Codes

As previously described, a VQ code book can be decomposed into a
cartesian product of smaller code books, a typical decomposition being
into code books for gain (energy, mean, residual energy) and shape.
Separate attributes are coded separately, but the coding is
interdependent because the selection of specific code books and the
distortion measure <can depend on previously chosen code

words(20’27’28).

Transform VQ

As a variation on a traditional scalar quantization technique, one can
take a transform of a large window of data and then use VQ on the

(29). A similar (and older) technique

resulting transformed vectors
is to filter the input process into subbands and use the vector
generalization of subband coding by applying VQ to the separate

(30,31) By generalizing the notion of a transform to include

outputs
any preprocessing of the data to enhance important features or well
match human senses, good codes can often be found by combining linear

filtering (possibly two dimensional) and VQ(32).
RECURSIVE QUANTIZERS
A VQ can be made to have memory by having a different code book for

each state of the code. The encoder is given an input and a state and
produces both an index of a code word in the state code book and a
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next state. The decoder tracks the state in order to decode using the
correct code book. Two forms of recursive VQ have been extensively

Q(33’16), a natural

studied in recent years. The first is predictive V
extension of predictive quantization (or DPCM) to vectors wherein a
linear vector predictor is formed based on the decoded reproduction
and subtracted from the input. The resulting residual is then put
into a VQ. The second approach is finite state VQ (FSVQ), which is a
form of switched VQ consisting of a finite collection of codebooks
(each associated with an encoder state) together with a next-state
rule which determines the next codebook from the current one and the

(62)

encoded word. Finite state codes were introduced by Shannon and

design algorithms for vector quantization were developed in
(34’35’36’37). Given the next-state rule, the design goal is to have
an intelligent rule for selecting future code books based on past
choices. These designs can be based on arguments from prediction
theofy, stochastic automata theory, or classification techniques. The

(36'37'38), uses a simple classifier to

latter approach, pioneered in
detect important 1local image attributes such as background or edge
detection and orientation. This classifier is used to divide a
training sequence into vectors (blocks) which follow each occurrence
of each class type. The sub-training sequences are then used to
design memoryless VQs. An FSVQ is then constructed by classifying the
decoder reproduction rather than the actual input, thus closing the
loop and permitting the decoder to track the encoder state from a
knowledge of the initial state and the received code words. These
codes have produced excellent quality monochromatic images at 1/3 to
1/2 bit per pixel and real-time hardware implementations have been

designed(39).

A general theoretical treatment of recursive VQ may be found in a

recent book by Gabor and Gyorfi(4o).

TRELLIS ENCODERS

If the decoder is a recursive VQ, then superior performance can be
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obtained by replacing the encoder by a trellis encoder (or delayed
decision or multipath encoder). This produces a trellis encoding
system which is designed using a variation of the Lloyd algorithm and
such systems have proved quite effective in waveform coding

applications(41’42’43). As with VQ, one can also design trellis
codes by using gradient search techniques instead of the Lloyd
algorithm(44’45)

MODEL VQ

Perhaps the most successful application of VQ to date has been that of
LPC VQ, a form of model VQ wherein one codes an autoregressive (all-
pole) model of a window of speech instead of the waveform

f(14’20). Here a complicated distortion measure such as the

itsel
Itakura-Saito distortion is used, but the Lloyd algorithm still works
easily since the distortion can still be written as an inner product
and a simple centroid computed. By grouping several LPC vectors
together, one can achieve even lower rates by similar techniques using

(46,47,48)

matrix quantization Model coders can be combined with

waveform VQ to form a variety of hybrid and adaptive systems, e.qg.,
(49,50,41,51,17)

VARIABLE RATE VQ

In many coding applications the activity of the data can vary widely

over time. In such applications it is often useful to use variable
rate codes, that is, codes that can use more bits for active vectors
and fewer bits for dormant ones. The cost is in added buffering and

software to ensure synchronization and possibly to meet a fixed rate

communication channel requirement, but this cost is often justified by

significant performance improvement. One approach 1is to simply
combine VQ with traditional noiseless coding techniques. (See, e.qg.,

(52).) Another approach is to design an inherently variable-rate VQ

by using tree pruning algorithms from the theory of decision tree

design to ©produce optimal variable-length subtrees from tree-
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(53). Here one which first designs a

structured vector quantizers
fixed rate tree-structured VQ wusing a Lloyd algorithm and then
"prunes" the resulting tree using an extension of a decision tree
(23)

. By

removing the leaves of a complete tree in an optimal fashion, one

design technique of Breiman, Friedman, Olshen, and Stone

obtains a collection of codes with distortion-rate pairs that can
strictly dominate even full searched unstructured VQ. The resulting
system is simple in comparison with noiseless codes for such large
alphabets and has the successive approximation property of TSVQ that
each bit improves the fidelity. Hence such codes are well suited to
applications where one wishes to improve the quality of an image (or a
selected portion) as additional bits arrive. Traditionally such
successive improvement has been accomplished by transform coding
sending additional coefficients. The VQ approach has the potential

for a smoother and locally optimal sequence of improvements.
WHERE NEXT?

The emphasis in VQ appears to have shifted from research to
development, in particular to real-time VLSI implementations of speech
and image coders at low and medium rates. In spite of this drift,
several interesting possible directions for future research exist,

among them being:

1. Fine tuning and comparing the many VQ variations with
traditional transform techniques for a variety of data types,
e.g., SAR, medical, video, and multispectral images.

2. Combined VQ and signal processing (e.g., transforming and
windowing and the incorporation of models for human vision
and voice into the signal processing and distortion measures)
for the best possible gquality compression at target bit

rates.

3. Real time implementation using state-of-the art custom and
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semi-custom chips.

4. Applications of VQ to speech and image recognition.
Understanding the theoretical connections between clustering
with minimum discrimination information distortion measures
and Markov source modeling. Designing speech and image
compression systems that are matched to subsequent processing
by machine or human experts.

5. Using digital or analog associative or Hopfield memories for
VQ implementation. Since VQ does not suffer much if a code
word close to the nearest neighbor is selected instead of an
exact nearest neighbor (unlike the case in error control
coding), associative memories are well suited to this
application.
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A ROBUST COMPRESSION SYSTEM FOR LOW BIT RATE
TELEMETRY - TEST RESULTS WITH LUNAR DATA

Khalid Sayood and Martin C. Rost
Department of Electrical Engineering
University of Nebraska

PROBLEM STATEMENT

The output of a Gamma Ray detector is quantized using a 14 bit A/D
converter. The number of each of the 214 or 16,384 levels occurring
in a 30 second interval is counted. In effect, a histogram of the
gamma ray events is obtained with 16,384 bins. The contents of these
bins are to be encoded without distortion and transmitted at a rate
less than or equal to 600 bits per second. Thus the contents of the
16,384 bins are to encoded using 18000 bits. The encoder should be
simple to implement and require only a minimal amount of buffering.

PROPOSED SYSTEM
Encoder

The contents of the bins are treated as a sequence for purposes of
encoding. The proposed system encoder can be divided into two stages
(three if a Huffman coding option is used. See Figure 1.) The first
stage is a leaky differencer whose input/output relationship is given

by
Zn = Xn - [ aXn_l ]
where [t] is the largest integer less than or equal to t. The reason

for using a leaky differencer is to allow the effect of errors to die
out with time.
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The output of the differencer forms the input for the second stage
which is a modified runlength encoder. The encoder codebook contains

six different types of symbols.

Mn - symbol used to represent negative differencer
output values, for example, the differencer

output values -1, -2,...,-n, are represented
by the symbols M1, M2,...,Mn, respectively.

Pn - symbols used to represent positive differencer values,
they are coded similar to the Mn symbols. Thus a
differencer output value of +3 would be represented by the
symbol P3.

Zn - symbols used to represent string of zeros of
length n. Since the number of Z-symbols is

kept small, these symbols represent "short"
string of zeros (O-strings), while the S0- and
Sl-symbols to be introduced 1later represent

"long" O-strings.

BR - In the encoding scheme that follows, there
will sometimes be a need to specify the end of
a sequence. The BR or break symbol is used

for this purpose.

SOXX - symbol used to represent long O-strings. The
S0 symbol indicates that a 0O-string is being
represented while X stands for a four bit
word. XX is thus an eight bit word specifying
the length of the 0-string.

S1XX - symbol used to represent long O-strings that

are followed by a 1. It is constructed in the

same manner as the S0XX symbol.
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Each symbol, Mn, Pn, 2n, BR, S0, and S1 is represented by a four bit
word. The number of symbols in the encoder codebook is
o(M)+o(P)+0(Z)+3 where o(M), o(P), and o(Z) are, respectively, the
number of negative source symbols, positive source symbols, and short
0-strings symbols to be channel coded. As each symbol is represented
by 4 bits, a total of sixteen encoder symbols are possible. 1In our
coding scheme, o(M) is set to 2, o(Z) to 6, and o(P) to 5.

This means that if the differential output is -1, -2, 1, 2, 3, 4, 5 or
a string of zeros of length five or less, it can be represented by a
single symbol. What if the differential output is a positive value
larger than five or a negative value less than -2? 1In such cases the
largest (in magnitude) Mn or Pn symbol is used as a concatenation

symbol. As an example, consider encoding the value 18.

Since o(P) is 5, the largest positive value that can be coded with a
single symbol is 5. If P5 is also used as a concatenation symbol,
larger source values can be coded. In this case, 18 can be coded as
P5 P5 P5 P3. The receiver accumulates a total for all the P5 symbols
consecutively received until a non-P5 symbol is received. This symbol
is used to complete the current source value. In this case, P3

indicates the source value is 18.

In the case where the source value is a multiple of the maximum P-
symbol value some confusion can occur in the decoding process.
Consider the coding of the source values 10 followed by 8. In this
case, four source symbols are required to code these values but, the
receiver decodes them as a 18. To overcome this problem the break
symbol (BR) is used. This symbol carries no data value but, is used
by the receiver to prematurely stop the accumulation of P-symbols.
Specifically, 10 and 8 are coded as P5 P5 BR P5 P3. The receiver
stops constructing the first source value when the BR is encountered

and start constructing the next with the following P5 symbol.
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If a source value to coded is negative, the above procedure is used
with the allowed M-symbols along with the BR symbol to prevent
incorrect receiver decoding. For example, -3 would be encoded as M2M1
and -4 would be encoded as M2M2BR.

In this particular application, the tails of a given signal frame
contain 1long runs of zeros that are separated by non-zero data
values. It is very 1likely that these 0O-string separators take the
value 1. Thus, it is beneficial to code these runs with one of the

following two symbols, each of which is three code words in length:
S0 x y a O-string of length xy (base 16).
S1 x y a O-string of length xy (base 16) followed a 1.

For example, the symbol, SO 4 0, represents a string of 64 0s, and the
symbol, S1 4 0, represents a string of 64 Os followed by a 1. If the
separating data value is not 1, then additional source symbols follow
the SO symbol to complete the description of its value. The maximum
length of 0O-string that can be coded with this type symbol is 255 (FF
base 16). If a string of length greater than 255 is encountered, a

concatenation rule must be applied.

Since the symbols SO 0 0 and S1 0 0 are not assigned, they are used as
0-string concatenation symbols. They are used to indicate the fact
that a 0-string is to be built whose length is greater than 255. Each
time one of these symbols is used it is assumed that a O-string of
length greater than 255 is being coded, and additional information is
to be provided on its length by the following symbols. A O-string is
terminated if the last SO-symbol indicates a length value other than

00 for xy.

For example, if a O-string of length 300 is followed by a 1, two
source symbols (six channel words) are required to code the string: S1
0 0 S1 2 D. The value for xy of the first symbol is 00, so the 0-
string is continued using the following Sl-symbol(s). In this way, O0-
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strings of arbitrary length can be constructed by concatenating as
many S1 O O symbols as needed to bring the overall reconstructed O0-
string length to within 255 0s of its full 1length. The final S1-
symbol in such a series which does not have a 0 0 length indicator
terminates the 0O-string concatenation process. Since the S1 symbol is
being used this 0-string is automatically followed by a 1. Consider
coding a O-string of length 300 that is followed by a -1. Two SO-
symbols (six channel words) are required to code the O0-string, and
one M-symbol (one channel word) is required to code the =-1: S0 0 0 SO
2 D M1 for a total of seven channel words.

Since the long runlength symbols require three channel words each, an
excessive amount of channel capacity can be wasted when coding short
runs of 0Os. As a consequence, a group of short run symbols that use
only one channel word each are used to alleviate this problem. The
identifier for these symbols is Zn (where n represents the length of
the O-string). For example, a run of 5 O0s is represented by the
symbol Z5. The coding length of a short O-string using 2Zn symbols
only improves the overall coding rate if the short O-string is coded
with fewer channel bits when using the 2Z-symbols instead of the SO0-

and Sl-symbols.

Consider the following example for coding a string of 10 0s. Since
o(Z) is 6, to code this O-string using Z-symbols takes two channel
words: Z6 Z4. But, when coded using an SO-symbol it takes three
channel words to code this 0O-string: SO0 0 A. Therefore, the Z-symbol
coding is more channel efficient. Since an S0- (or S1-) symbol always
require three channel words, the only way to guarantee that short 0-
strings are coded efficiently is to set the maximum number of short Z-
symbols in a single 0-string coding to two. Thus, for an o(Z) of 6,
the maximum O-string length to be Z-symbol coded is 12.

The encoder described above has two main characteristics. First, it

has been designed for the specific task noted in the problem
statement. No claims are made regarding its suitability for other
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tasks. The second characteristic is its simplicity. The encoding
operation requires a very small amount of computation. Furthermore,

the onboard memory requirements for buffering are minimal.

If Huffman coding is to be used, the final stage of the encoder is a
Huffman coder. This will, of course, increase the complexity of the
encoder and may make the system more vulnerable to channel errors.
Therefore, if at all possible we will avoid using a Huffman coder.

Decoder

The decoder for the proposed system consists of three stages. The
first stage of proposed system decoder is maximum A Priori Probability
(MAP) receiver(G). The MAP receiver design is based on the assumption
that the output of the encoder contains dependencies.

The MAP design criterion can be formally stated as follows: For a
discrete memoryless channel (DMC), let the channel input alphabet be

denoted by A = ({ag,ai,...,aM-1), and the channel input and output
sequences by Y = (Yo,Y1,--+,¥L-1} and Y = (90,91/--,¥1-1)"
respectively. If A = (Aj) 1is the set of sequences A; =
{ej,0r®i,2/,+++s25,1-1},2j, k€A, then the optimum receiver (in the sense

of maximizing the probability of making a correct decision) maximizes
P{C], where
P[C] = P[C|Y]P[Y].
[C] =g PIC|TIP[Y]

This in turn implies that the optimum receiver maximizes P[C|¥]. When
the receiver selects the output to be Ay, then P[C|¥] = P[Y = Ay|¥].
Thus, the optimum receiver selects the sequence Ax such that

P[Y = Ax|¥] > P[Y = Aj|¥] Vji.
When the channel input sequence is independent, this simplifies to the

standard MAP receiver(s). Under conditions where this is not true,
the receiver becomes a sequence estimator which maximizes the path
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metric. EIOgP(yi]?i,yi_l)(s). The path metric can be computed for a
particular system by rewriting it using the following relationship(4).

P[¥i = anlyi = a§]P[yi = aj|yi-1 = an)

P(yi = aj|¥i = an,y¥i-1 =ap] =
21 Ply; = a)1|yi-1 = ap]P[¥i = aplyi = a1)

Notice that the right hand side consists of two sets of conditional
probabilities (P(¥ilyil} and (P(yilyi-11}. The first set of
conditional probabilities are the channel transition probabilities
while the second depend only on the encoder output. The two are
combined according to the above relationship to construct an M X M X M
lookup table for use in decoding. The structure of the MAP receiver
is that of the Viterbi decoder(4:5),

The second stage of the decoder is the inverse operation of the
modified run-length encoder. The operation of this stage has already
been described in the previous section. The final stage of the
decoder is the inverse of the differential operation with an input
output relationship

Xn = 2p + [axXp-1]

RESULTS

In this section we present results obtained by using the proposed
system of the previous section. The data used was provided by Ms.\
M. Mingarelli-Armbruster of the Goddard Space Flight Center. This
data was generated according to a Poisson distribution where the
Poisson parameter was obtained from ten hours of lunar data. Both
noisy and noiseless channel performance of the proposed system were
examined via Monte-Carlo simulation. A total of twenty, 30-second
intervals were used in the tests. The performance was compared with
the Rice algorithm(1-3),

Before proceeding with the results, some caveats are in order. First,
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the name Rice algorithm is a misnomer. What is presented(1-3) is not
an algorithm but an approach. 1In this approach, a suite of algorithms

is used to encode sections of the data, and the most efficient

algorithm for that particular section of data is selected. In this
way, data with very different statistical profiles can be
accommodated. Thus what is presented(1'3) could more correctly be
called the Rice Universal Coding Approach (RUCA). What we compare

against here are algorithms presented(1-3) as examples of the RUCA.
These algorithms were constructed for use in very general situations.
As opposed to this, the particular algorithm presented here has been
designed for a specific task. A final observation is that the encoder
presented in this paper could very easily be used as the first stage
of the RUCA. However, this would result in a rather complex encoder
and substantial increase in the need for onboard memory over the
proposed design. Therefore, if the algorithm presented in the
previous section satisfies the requirements in terms of rate and
robustness, such a step would be undesirable.

The results of the tests with both algorithms are presented in Table 1
and Table 2. The number of bits required to code twenty thirty-second
intervals and the average rate needed for both algorithms is presented
in Table 1. The second and third columns contain the total number of
bits and the rate when the Rice algorithm is used. The average rate
over twenty intervals is 719 bits per second. Columns three to six
present the results obtained by using the proposed algorithm. The
first two columns contain the results for the case where the Huffman
coder was not used while the last two columns contain the results for
when the Huffman coder formed the last stage of the encoder. The rate
without the Huffman coder averaged over twenty intervals is 595 bits
per second while the average rate when the Huffman coder is used is
522 bits per second. These results indicate that the proposed system
will satisfy the specifications (coding rate below 600 bits per
second) both when the Huffman coder is used and when it is not. As
both systems meet the target and as the inclusion of the Huffman coder
increases both the complexity and the wvulnerability of the system to
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channel noise, we elected to use the system without the Huffman coder.

Table 2 provides the performance of the algorithms under noisy channel
conditions. Three performance measures are used, namely, mean squared
error (MSE), mean absolute error (MAE), and the number of decoded
values which are in error. Note the very large difference between the
performance of the Rice algorithm and the proposed algorithm. Also,
the proposed algorithm maintains a robust performance at extremely
high error rates. 1In fact, under even highly adverse conditions the
mean squared error is almost constant, and the number of erroneous
decoded values is about 25% of the total. However, the performance
of the algorithms at high error rates may be irrelevant in this
particular situation. The reason being that the transmitted data will
be well protected by a channel coding scheme consisting of a Reed-
Solomon coder followed by a convolutional coder. This combination is
expected to keep the average probability of error on the coded channel
below 9 X 1076,

Finally, we examine the relative complexity and buffer requirements
for the two algorithms. The proposed algorithm can be easily realized
with a simple program implemented using a microprocessor. Based on
the memory requirements for the simulation program used in this study,
the memory needed for actual implementation should be about 1 K. The
only time buffering may be required is when a large differencer output
is encountered, and the encoder has to generate several channel
symbols for one input. Depending on the way the entire system is
implemented, the buffer requirements could range from a single symbol

buffer to perhaps a sixteen symbol buffer.

As opposed to this, the Rice algorithm by its very nature, being a
universal coding algorithm, is quite complex. Each block of data is
encoded using a number of candidate algorithms; the algorithm which
provides the most efficient encoding is then selected. Each of the
candidate algorithms is itself relatively complex though some very
ingenious techniques are used to make subunits of one algorithm common
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to several candidate algorithms. Because several passes are required

to do the encoding, the buffering requirements for this approach are
substantial.

These differences 1in complexity are very natural based on the
different objectives of the two algorithms. The proposed system is
designed for a very specific situation while the Rice algorithm is
designed to handle general situations.
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TABLE 1

Coding rates with the Rice Algorithm and the Proposed Algorithm, (HC)
denotes the results for the case where the Huffman Coder was used.

RICE ALGORITHM PROPOSED ALGORITHM
INTERVAL TOTAL RATE TOTAL RATE TOTAL BITS RATE
BITS BITS (HC) (HC)
1 21,647 721.6 17,832 594.4 15,733 524.4
2 21,385 712.8 17.528 584.3 15,345 511.5
3 21,530 717.7 17,784 592.8 15,520 517.3
4 21,562 718.7 17,840 594.7 15,691 523.0
5 21,666 722.2 18,144 604.8 15,883 529.4
6 21,424 714.1 17,504 583.5 15,457 515.2
7 21,841 728.0 18,048 601.6 15,882 529.4
8 21,630 721.0 18,096 603.2 15,907 530.2
| 9 21,719 723.9 18,132 604.4. 15,843 528.1
| 10 21,568 718.9 18,096 603.2 15,695 523.2
11 21,308 710.3 17,604 586.8 15,438 514.6
12 21,509 716.9 17,728 590.9 15,580 519.3
13 21.633 721.1 17,780 592.7 15,581 519.4
14 21,822 727.4 18,016 600.5 15,913 530. 4
15 21,296 709.8 17,564 585. 4 15,361 512.0
16 21,701 723.4 17,956 598.5 15,872 529.1
| 17 21,058 701.9 17,296 576.5 15,139 504.6
| 18 21,312 710. 4 17,688 589.6 15,449 514.9
19 21,713 723.8 18,160 605.3 16,033 534.4
| 20 21,888 729.6 18,292 609.7 16,125 537.5
OVERALL
AVERAGE 718.7 595.1 522.4
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TABLE 2
Performance of the algorithms under noisy channel conditions.

RICE ALGORITHM

MEAN MEAN # OF

PROBABILITY SQUARED ABSOLUTE DECODED
OF ERROR ERROR ERROR ERRORS

10-6 0.0760 0.023 140

10~> 4.07 0.45 1,908

10-4 31.49 3.14 10,177

103 479.22 16.03 15,658

10~2 8,562.87 76.75 16,189

PROPOSED ALGORITHM

MEAN MEAN # OF

PROBABILITY SQUARED ABSOLUTE DECODED
OF ERROR ERROR ERROR ERROR

10-6 2.4 X 1075 1.2 X 1075 1

10-5 0.026 0.016 218

10”4 0.17 0.14 1,287

10-3 0.78 0.28 2,944

10~2 6.81 0.71 3,765

SUMMARY AND CONCLUSIONS

We have presented a robust noiseless encoding scheme for encoding the
gamma ray spectroscopy data. The encoding algorithm is simple to
implement and has minimal buffering requirements. The decoder
contains error correcting capability in the form of a MAP receiver.
While the MAP receiver adds some complexity, this is limited to the
decoder. Nothing additional is needed at the encoder side for its

functioning.
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RS WORD FHROR PROBABILITY, CONCATENATED SYSTEM
SEE LHHOR PHOUBABILITY, VITEHBE DECODER ALONE

1x10”}

1x10~2

1x1073

1x 1074

1 X107

1 X 10“s

T 7T Illl[

MEASURED VITERBI DECODER PERFORMANCE
OF: K=7,RATE=1/2, DATA RATE=40kpbs, S-BAND
UPLINK, X-BAND DOWNLINK, MOD INDEX=80°

BASZLINE PERFORMANCE K=7, RATE=1/2,
CONVOLUTIONAL CODE, VITERBI DECODING,
SOFT QUANTIZED , Q=3 i

MEASUREZ ERFORMANCE
AT THE CC"CATENATED K =7
RATE = 1,2, VITER8I DECODER
AND THE FOLLOWING

—— [ =8
B E=15
RS CCTE
1 lgL ! 1 |
e
25 3.0 35 40 45 50 55
(Eb \D1 1GB)

PERFORMANCE OF THE RS / VITERBI CONCATENATED
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N89-22343
LOCAL INTENSITY ADAPTIVE IMAGE CODING

Friedrich O. Huck
NASA Langley Research Center

The objective of preprocessing for machine vision (low-level vision
processing) is to extract intrinsic target properties. The most
important properties ordinarily are structure (contour outlines or
primal sketches) and reflectance (color). Illumination in space,
however, is a significant problem as the extreme range of 1light
intensity, stretching from deep shadow to highly reflective surfaces
in direct sunlight, impairs the effectiveness of standard approaches
to machine vision. To overcome this critical constraint, we are
investigating an image coding scheme which combines local intensity
adaptivity, image enhancement, and data compression. It is very
effective under the highly variant illumination that can exist within
a single frame or field of view, and it is very robust to noise at
low dlluminations.

In this presentation, I will 1) review some of the theory and salient
features of the coding scheme, 2) characterize its performance in a
simulated space application, and 3) describe our research and

development activities.

The local intensity adaptive image coding consists of an innovative

model of processing in the human retina referred to as Intensity
Dependent Spread (IDS)(l) and some additional logic to extract contour
outlines and reflectance ratios at the boundary of two surfaces.
Figure 1 is a schematic representation of the IDS model. The line of
detectors represents a slice through a two-dimensional array of
detectors. When an optical image, or 1light distribution, falls on
the detector array, then each detector sends a signal into a network,
where it spreads out. Each channel, in turn, sends out a signal that
is the sum of all the signals that arrive in its 1location in the

summation network. The special property of the IDS model has to do
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with the way that the signal from each detector spreads in the
summation network. As depicted in the lower half of Figure 1, the
magnitude of the signal at its center is proportional to the
intensity of the light falling on the detector, and the spread of the
signal is inversely proportional to this intensity. The total volume
under the spread remains constant. That is all there is to the model.
It has been demonstrated that this simple space-variant model of
image processing has many of the properties of human visual

perception(z).

Figure 2 demonstrates the response of the IDS processor to a spot, or
point source, that is brighter than the background. Each detector
spreads its signal as governed by the intensity of the light falling
on the detector. All of the spreads for the uniform background are
the same except for the one detector that is more brightly lighted.
Its spread is higher and narrower. Each output channel just adds up
all of the contributions it receives. The result of this processing
is shown as the output signal. As can be seen, the IDS response to a
point source has the same shape as the response of Marr and
Hildreth's(3) familiar Laplacian of a Gaussian (V2G) operator for
enhancing edges. In fact, the IDS processor exhibits center
surround antagonism and all other manifestations of bandpass filtering
that have made the V2G operator a favorite algorithm for low-level
vision processing. However, the IDS response 1is nonnegative and
spatially variant. As we will show in the next three figures, the IDS
processor accounts for several familiar perceptual phenomena of human

vision that make it a highly robust low-level vision operator.

First, let us compare the IDS operation to conventional imaging.

Figure 3 shows intensity profiles taken across conventional and IDS
images of a step-type edge input for three illuminations, or SNR's.
Conventional image-gathering yields a blurred representation which is
visually representative of the target if the SNR is sufficiently
high. As the illumination decreases, the representation gets buried
in the noise. Image gathering with the IDS processor yields a target
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representation that consists of pulses. The one-crossing of each
pulse locates the position of an edge in the target. The peak and
trough values of the pulse are proportional to the ratio of the
reflectances at the two sides of the edge, entirely independent of
illumination. As the illumination decreases, the width of the pulse
becomes broader (thereby trading resolution for sensitivity), but the
accuracy of the one-crossing is unimpaired. For machine vision, this
property means that edge detection for determining structure is
highly robust to widely variant illumination.

Next, let us compare the IDS operation to edge detection with the
linear Laplacian of a Gaussian (V2G) operator as well as conventional
imaging. Figure 4 shows intensity profiles taken across conventional
images and outputs from the V26 and IDS operators for two
illuminations, high and low. Noise is disregarded for simplicity.
The peak and trough values of the V3G pulses are proportional to both
illumination and reflectance. It is therefore not possible to
characterize the reflectance properties of the target independent of
illumination. However, the peak and trough values of the IDS pulses
are proportional only to the reflectance changes. This striking
property of the IDS processor mimics human visual perception (Weber's
law). For machine vision, this property means that it is possible
to extract the reflectance ratio at the boundary of two areas.

And finally, let us turn to a scene which realistically simulates a

scene that may be encountered in space. Figure 5 compares the IDS
operation to conventional image gathering and edge detection with the
V2G operator. A single sour¢ce of light (35mm slide projector) was
used to illuminate the model of a satellite and astronaut surrounded
by a black curtain. The image was obtained with a standard 640-by-484
sensor-array camera using 8-bit encoding. By being locally adaptive
to both the directly illuminated part of the satellite as well as to
the astronaut located in deep shadow, the IDS operator provides a

much more complete and reliable rendition of the scene.
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If we use the V2G processor and zero-crossing detection logic, then
we need to transmit only the 1location of the (correctly and
incorrectly) identified edge 1locations. The corresponding data
compression is 24. If we use the IDS processor together with one-
crossing detection logic, then the data compression ratio is 20,
similar as before. However, in addition to this data compression,
the astronaut, who was nearly lost before, is now clearly detected
and could probably be identified by a higher level AI algorithm. It
-should also be noted that we did not yet attempt to use efficient
~coding techniques for transmitting contour outlines. To do so would

probably lead to further significant increases in compression.

The identification of the scene from structure alone could be
significantly improved upon when information about reflectance ratios
is retained in the transmitted data. The data compression would then
reduce from 20 to 13. Figure 6 presents three representations that
can be extracted from the complete IDS data. As before, we could
display structure alone, or we could display reflectance changes as
well as structure. We could draw the contour outlines on the
restored gray levels in white to emphasize structure or in black to
enhance visual sharpness. In either case, it is important to note
that we have not sacrificed our accuracy of edge location by the data
compression, and that we have been able to extract reflectance
changes independent of illumination. In fact, it is possible under
suitable conditions to locate edges with higher accuracy than the

sampling intervals of the camera. The only sacrifice we have made is
to trade discrimination of fine detail for increased sensitivity to
adapt to low illuminations. However, this fine detail would otherwise
often be lost in noise. An important extension of IDS processing
would be to extract color. Color could then be correctly detected

independent of illumination.
We must now admit that the structure-plus-reflectance images in Figure

6 are fakes to illustrate a potential capability. They simply
represent the superposition of (correctly extracted) structure on
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regular (brightness) images. We are now extending our structure
extraction algorithm to an improved structure-plus-reflectance

extraction algorithm.

The IDS model of retinal processing was conceived by Tom Cornsweet of
the University of California, Irvine. Langley Research Center (LaRC)
is now working with Cornsweet and Odetics, Inc., in the evaluation of
this model for various applications of interest to NASA, including,
in particular, machine vision and image coding for space operations.
Odetics 1is also under contract to LaRC to develop a hardware
implementation of the IDS processor (see Figure 7). This processor
will be capable of handling image data at real-time TV rates (30
frames per second). It will be implemented on several boards for the
DATACUBE of Sun image-processing work stations. This board will

become commercially available in the Fall 1989.

The full potential of the IDS processor for data compression as well
as image enhancement and feature extraction is realized, of course,
only when it is implemented as a focal-plane processor, or "retinal
camera" (see Figure 8). The present design of the IDS processor for
Sun workstations could be implemented in one 5" by 5" board with 8
VLSI chips. A more advanced approach would be parallel asynchronous
focal-plane image processing (see Figure 9). This processor is
representative of a new class of devices which would permit full two-
dimensional parallel readout and processing perpendicular to the
focal plane. Advantages over conventional image gathering and
processing techniques include rapid parallel distributed processing,
high dynamic range, and the elimination of conventional charge
transfer, multiplexing, and preamplifiers. Vision processing could
potentially be performed several orders of magnitudes faster than with
conventional approaches. Moreover, parallel processing would be ideal
for tasks like visual pattern recognition. However, the development

of this approach is still in its initial experimental stage.
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DATA COMPRESSION EXPERIMENTS WITH LANDSAT THEMATIC MAPPER
AND NIMBUS-7 COASTAL ZONE COLOR SCANNER DATA

James C. Tilton and H. K. Ramapriyan
Space Data and Computing Division
Goddard Space Flight Center

ABSTRACT

The variety of remote sensing instruments expected to be deployed in
the 1last decade of this century and early 21st century, their
resolutions and the anticipated data collection rates imply
requirements for on-board reduction of data volumes in order to
maximize the scientific return from space in the face of limited
transmission bandwidth. Such data reductions can be achieved either
through 1lossless or 1lossy data compression or through on-board
"analysis and information extraction" and transmission of results.
Several recent and potentially anticipated advances in computer
science and hardware technology make it feasible to consider the
development of on-board computer systems with sufficient capability
to accomplish the above tasks. It is obvious that compression
techniques which are shown to be feasible for on-board implementation
can also be implemented for on-ground data compression thus helping
reduce the archival storage costs, increase the on-line availability
of data, and reduce times needed for browsing data for a given region

or time interval.

Studies evaluating image entropies treating images pixel by pixel or
considering differences between adjacent pixels indicate that
lossless compression ratios of 1.5 to 3 can be achieved (of course,
depending on the data) by optimal encoding of pixel values or
differences. It is to be noted, however, that the entropies so
defined do not represent the theoretical performance 1limit on

reversible (i.e., lossless) data compression. Lossy compression
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techniques such as predictive encoding, discrete transforms, cluster
coding and vector quantization can achieve greater compression ratios
which are a function of the acceptable level of 1loss. A common
objection to these data compression techniques is that with
significant compression (factors greater than 10) the data cannot be
exactly recovered in their raw form.

For any lossy technique to be acceptable for a given application, it
is necessary to demonstrate that the most of the relevant information
remains in the compressed data. Therefore, to prove the utility of a
compression technique for a scientific application, it is necessary to
perform case studies with remotely sensed data in selected
disciplines, use well accepted analysis techniques, and demonstrate
that compressed data result in very nearly the same analysis results
as the original data. With sufficient interaction between the
scientific community and developers of data compression techniques it
should be possible to define such case studies, and in fact, arrive at
techniques which will not only reduce the data volume using criteria
tailored to the analysis techniques, but also facilitate data analysis
by direct use of compressed data.

In this paper, we present a case study where an image segmentation
based compression technique is applied to Landsat Thematic Mapper (TM)
and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression
technique, called Spatially Constrained Clustering (SCC), can be
regarded as an adaptive vector quantization approach. The SCC can be
applied to either single or multiple spectral bands of image data.
The segmented image resulting from SCC is encoded in small rectangular
blocks, with the "codebook" varying from block to block. Lossless
compression potential (LCP) of sample TM and CZCS images are
evaluated. For the TM test image, the LCP is 2.79. For the CZCS test
image the LCP is 1.89, even though when only a cloud-free section of
the image 1is considered the LCP increases to 3.48. Examples of
compressed images are shown at several compression ratios ranging from
4 to 15. In the case of TM data, the compressed data are classified
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using the Bayes' classifier. The results show an improvement in the
similarity between the classification results and ground truth when
compressed data (with compression ratios of up to 13.8) are used, thus
showing that compression is, in fact, a useful first step in the
analysis. Future work in this case study will include the use of SCC-
compressed CZCS data to obtain chlorophyll concentrations using the
algorithm currently in use at GSFC for the production of global
chlorophyll maps.

INTRODUCTION

The resolutions and anticipated data collection rates of the variety
of remote sensing instruments expected to be deployed in the last
decade of this century and the early 21st century imply requirements
for on-board reduction of data volumes in order to maximize the
scientific return from space in the face of 1limited down-link
transmission bandwidth. Such data reductions can be achieved either
through 1lossless or 1lossy data compression or through on-board
analysis and information extraction and transmission of results.
Several recent and anticipated advances in computer science and
hardware technology make it feasible to consider the development of
on-board computer systems with sufficient capability to accomplish
the above tasks. It is obvious that compression techniques which
are shown to be feasible for on-board implementation can also be
implemented for on-ground data compression for the purpose of
reducing archival storage costs, increasing the online availability
of data, and reducing the time needed for browsing data for a given

region or time interval.

Studies evaluating image entropies treating images pixel by pixel or
considering differences between adjacent pixels indicate that lossless
compression ratios of 1.5 to 3.0 can be achieved (of course, depending
on the data) by optimal encoding of pixel values or differences
(Chenl, Ramapriyan’, whartonll), The entropies so defined do not

necessarily represent the theoretical performance limit on reversible
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(i.e., lossless) data compression. However, the actual theoretical
performance 1limit is 1likely to be less than twice the compression
ratios indicated. Lossy compression techniques such as predictive
encoding, discrete transforms, cluster coding and vector quantization
can achieve greater compression ratios subject to an acceptable level
of loss. A common objection to these data compression techniques is
that with significant compression (factors greater than 10) the data
cannot be exactly recovered in their raw form.

For any lossy technique to be acceptable for a given application, it
is necessary to demonstrate that most of the relevant information is
retained in the compressed data. To prove the utility of a
compression technique for a scientific application we must perform
case studies with remotely sensed data in selected disciplines, use
well accepted analysis techniques, and demonstrate that the use of
compressed data produces very nearly the same analysis results as
with the original data. There are several case studies where effects
of data compression on multispectral classification have been studied
(Kauth®, Hilbert2?, Ramapriyan?). A common characteristic among these
studies is that the compression technique is really a precursor to
analysis and information extraction. A variety of such case studies
are needed for several scientific disciplines and applications with
sufficient interaction between the scientific community and developers
of data compression techniques. Through such case studies it should
be possible to arrive at techniques which will not only reduce the
data volume using criteria tailored to the analysis techniques, but
also facilitate data analysis by direct use of compressed data.

In this paper we present a case study where an image segmentation
based compression technique is applied to Landsat Thematic Mapper (TM)
and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. When accompanied
by an encoding of the resulting segmentation, the Spatially
Constrained Clustering (SCC) segmentation approach can be regarded as
an adaptive vector quantization approach to data compression. The ScC
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data compression approach can be applied to either single or multiple
spectral bands of image data. The segmented image resulting from SCC
is encoded in small rectangular blocks, with the "codebook" varying
from block to block.

ALGORITHMS AND ERROR MEASURES

In this section, we define the Lossless Compression Potential (LCP)
of an image and the error measures used to evaluate the compressed
data. We also describe the SCC segmentation algorithm and the block

cluster coding method used to encode the segmented image to obtain a

compressed image.
Lossless Compression Potential

Ideally, the LCP of a given image would be defined as the maximum
factor by which the image can be reversibly (that is, losslessly)
compressed. If every pixel of an image is totally uncorrelated with
other pixels in the image, this ideal LCP could be easily calculated
from the zeroth order entropy of the image. However, image pixels are
generally highly correlated, causing the =zeroth order entropy to
underestimate the LCP of the image. To compensate partially for the
correlation between image pixels, we define our LCP based on the
zeroth order entropy of a difference image in which each pixel is
represented as a function of three neighboring pixels and itself
(Rosenfeld and Kak8):

d'(x,y) = d(x,y) - d(x-1,y) - d(x,y-1) + d(x-1,y-1) (1)

where d(x,y) represents the original image value at pixel (x,y), and
d'(x,y) represents the difference image value at pixel (x,y). This
is a special case of two-dimensional Differential Pulse Code
Modulation (DPCM) (Jain3). (Note: the first row and column of d'(x,y)
are generated by assuming that the nothn yroy and column of d(x,y) are

equal to some "average" value. This average value must be stored
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separately. For convenience, we can take this to be the median value
of the first row of the image.) In the case of multiband images, each
band is transformed separately according to equation (1) above.

The entropy (Shannon®) of an image is obviously dependent on the
definition of the "source alphabet" and statistics of the reception
of symbols from it. In the one extreme, the image could be considered
to be obtained from a binary source (i.e., as a serial bit stream).
In the other extreme, the source could be an "image generator" which
produces images of a given size and the given image would then be
regarded as an instance from the ensemble of all possible images
(i.e., a single symbol from a very large alphabet!). In practical
applications, the source alphabet is defined to consist of single or
multiband n-bit pixel values (e.g., for 7-band Landsat TM data the
source alphabet could either be all possible 8-bit pixel values or
all possible 56-bit pixel values).

The zeroth order entropy, HO, of an image, d, is given by

B
Ho (d) = -2 1Pi (d) x logz (Pi (d)) (2)
1 =

where Pi(d) is the probability of a pixel in image, d, having value i.
B = 2, where b is the number of bits per pixel in the image. We
calculate LCP of image d(x,y) by first finding the difference image
d'(x,y) through the process defined by equation (1). We then estimate
the pixel value probabilities, Pi(d'), from the histogram of d4d'(x,y)
and calculate the zeroth order entropy, Hp(d'), through equation (2).
To complete the definition of the LCP we note that in order to decode
the compressed image reconstructing the original image we need to
know the code used to encode the image. We assume that a variable
length Huffman code is used to encode the image to achieve close to
ideal. Thus, we define our LCP as

LCP = ——=-————-u- (3)
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where b is the number of bits per pixel, N is the total number of
pixels in the image, B is the total number of bits needed to
describe the Huffman Code, and Hp is the zeroth order entropy of the

difference image, d4d'(x,y).

In the case of multiband images, the encoding can be done by treating
each band separately (band-by-band compression) or by treating them
all together (across-band compression).

From equation (3), we see that as N becomes sufficiently large, the
overhead of storing the code becomes negligible. Since the variable
length Huffman code 1is uniquely determined by the ranking of
frequencies of the grey levels in the image, a means of storing the
code is to store the rank order table derived from the image
histogram. In the case of a single band image with b-bit pixels,
the number of bits required to store the compression code is bounded

by
Be < b + 4x2Px(b+2) (4)

assuming b bits to store the median of the original image d(x,y) and
(b+2) bits per entry in the rank order table of the transformed image
da'(x,y) with ax2b possible entries.

In the case of multiband image taken together (across-band
compression), the number of possible entries in the histogram becomes
quite large and, if we store all entries (including those with zero
frequencies) the overhead for code storage becomes considerable. One
way around this is to store the histogram as a paired table, with
entries (viz, multiband image value, frequency or rank order) only

when the frequency is nonzero.

However, unique vector counting experiments (Whartonll) have shown
that for moderately sized (say 512x512) images, the number of entries
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in the histogram of a 7-band TM image are comparable to the image size
itself. In these cases there is nothing to be gained by attempting

across-band compression as defined above.
Error Measures

A widely used method for evaluating the gquality of a compressed and
reconstructed image relative to the original image is the Mean
Squared Error (MSE). The MSE of band "i" of a multiband image is
defined as

N

MSEj = E[(D;-D¥j)?] = 1/N-1 21<Dip—0rip)2 (5)
p:

where Dj and D¥j are the data values of the ith pand of the original
and reconstructed images, respectively; Dip and Drip are the values
of the pth pixel of the ith pand of the original and reconstructed
images, respectively; E denotes the expected value; and N is the

total number of pixels in the image.

The MSE;j as defined above is a single-band error measure. One could
define a multiband MSE by simply summing the MSEj over the bands.
However, this definition does not account for the differences in
variance between individual bands, and the values that would be
obtained do not correspond to a direct conceptual notion of error. We
prefer an error measure we call the multiband Root Normalized RNMSE,
which we define as follows:

m
RNMSE = 1/m 3 / MSE;/VARj (6)
i=1

where VARj is the variance of the ith pand and m is the number of
bands in the multiband image. In addition to accounting for the
differences in variance between individual bands, the RNMSE carries an
intuitive interpretation: The RNMSE is the band average of the
single-band RNMSE, which can be regarded as the mean deviation of a
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reconstructed image pixel value from the corresponding original image

pixel value per standard deviation of the band.
Spatially Constrained Clustering (SCC)

SCC is an iterative parallel segmentation approach that performs the
"globally best merge"” among spatially adjacent regions at each

iteration. The globally best merge 1is the merge with the best
similarity criterion value over all pairs of spatially adjacent
regions. As implemented here, the SCC algorithm starts by
initializing each pixel as a separate region. The globally best pair
of regions are then merged at each iteration. The algorithm is

considered to have converged when either a desired number of regions
remain, or when no pair of adjacent regions is similar enough to be
merged according to a predefined bound on the similarity criterion. A
key aspect of any region growing approach is the similarity criterion
used to determine whether or not a region should grow by merging with
a neighboring region or pixel. The best similarity criterion depends
upon the application. To fully explore the utility of the general
SCC approach, we need to devise and test several different similarity
criteria for different types of scientific image data and for various
analysis procedures performed on each type of scientific image data.
In the experiments reported here, the similarity criterion used is

based on minimizing variance normalized mean squared error.

In the previous section we defined the mean squared error for band
"i®, MSEj (see equation 5). The variance normalized mean squared
error for band "i" (NMSEj) is defined as

MSE{
NMSEj = —----- (7)
VARj3
where VARj is the variance of band "i", as before. The similarity

criterion used in our tests is the MAX(ANMSE;j) for each pair of
spatially adjacent regions, where the maximum is taken over all bands
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(1<i<m). For a particular pair of spatially adjacent regions, ANMSEj;
is the change in NMSEj when the pair of regions is merged and the
reconstructed image is formed by substituting the mean grey level of
each region for the grey level for each pixel in the region. The
globally best merge is then the pair of regions, out of all spatially
adjacent regions, that minimizes the similarity criterion.

The change in NMSEj, or ANMSEj, is calculated as follows. Define

MSE®; - MSEj
ANMSE; = (8)
VAR{

where MSE€; is the mean squared error when regions j and k are merged,
while MSEj is the mean squared error before regions j and k are
merged. Using the definitions of MSEj, and the region mean, it is

easy to derive a more fundamental version of equation (8), viz

. (Dis = Do 2 . - Tye 2
ANMSE; _" (Dij = Djjk)“ + nk(Dix - Djijk) %)
(N - 1)VARj

where n3 and nkg are the number of points in regions j and Kk,
respectively, before combining, and N is the number of points in the
image. Djj and Djx are the mean values of band i for regions j and
k, respectively, before combining, and Dijk is the mean value of band
i for the region that would result from combining regions j and k.

We have implemented the SCC algorithm on the Massively Parallel
Processor (MPP) at the NASA Goddard Space Flight Center. The MPP is
a Single Instruction, Multiple Data stream (SIMD) computer containing
16,384 bit serial microprocessors logically connected in a 128-by-128
mesh array with each microprocessor have direct data transfer
interconnections with its four nearest neighbors. With this massively
parallel architecture, the MPP is capable of billions of operations

per second.
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Block Cluster Coding

The SCC segmentation is encoded for storage or transmission by a
block encoding technique. The current implementation of the SCC
algorithm performs segmentations on relatively small blocks of image
data (from 32x32 to 128x128) because of memory limitations on the MPP.
(NOTE: This limitation has been lifted in a more recent implementation
in which image data and intermediate results are stored temporarily in
a "staging buffer memory.") This restricts the block sizes to be used
for encoding to sizes that can be evenly divided into the ScCC
segmentation block size. The SCC segmentation block size for the
7-band Landsat TM data used in this study was 42-by-42 pixels. This
restricted the encoding block sizes to 42-by-42, 21-by-21, 14-by-14,
7-by-7, 6-by-6, 3-by-3, or 2-by-2 pixels. (The 6-by-6, 3-by-3 and
2-by-2 block sizes were not used because encoding becomes inefficient
at very small block sizes.) The optimal encoding block size must be
determined empirically for each application.

In performing the block cluster coding, two files are created. The
region labels in each block are renumbered to use the minimal number
of bits and stored as the region map file, and the mean vectors for
each region in each block are stored in a region feature file. The
region map file is further losslessly compressed by an appropriate
method. A method we found to be effective is run-length coding along
bidirectional scan lines (odd lines scanned left to right, even lines
scanned right to left) with maximum run length equal to the number of

samples in each line of the coding block.

This compression scheme of segmentation followed by block cluster
coding was inspired by the Cluster Compression Algorithm (CCA)
developed by Hilbert (2) . The main difference between CCA and our
approach is the segmentation algorithm used to define the regions.
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EXPERIMENTAL EVALUATION

In this section, we describe the data sets used for the evaluation of
data compression procedure, the quality criteria considered, and the

experimental results.
The Data Sets

A 468-by-368, 7-band subset of a Landsat TM image is one of the data
sets used in this study. The subset is registered to a U.S.
Geological Survey topographic map of the Ridgely Quadrangle (7.5
minute quad sheet) in Maryland. This particular image subset was
chosen because the data had a sufficient variety of classes and it had
a digitized ground truth map that was registered and rectified to the
topographic map. In addition, this data set was used in an earlier

data compression study (Ramapriyan7).

The other data set used in this study is a 486-by-1968 section of a
5-band Nimbus-7 CZCS image. This image was collected on October 25,
1980 over a section of the equatorial Pacific Ocean, and contained
substantial numbers of scattered clouds in the western half of the
image, and some very heavy clouds in the far eastern quarter of the
image. The remaining quarter of the image was almost completely cloud
free. The C2CS data contrasts sharply with the TM data set in that,
except for the clouds, the CZCS has no obvious spatial features, while
the T™M data set has numerous, very obvious, spatial features. The
cZCS image has no "ground truth" file.

Quality Criteria
The complexity of each dataset is measured using the band-by-band LCP.
We measured the effects of data compression on both the TM and CZCS

data sets by calculating the RNMSE. However, the RNMSE does not

necessarily measure how much scientifically relevant information is
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retained in the compressed image. For the TM data we used the
scientifically relevant quality measure of classification accuracy
using two different classification approaches. We have as yet not
developed a scientifically relevant quality measure for the CZCS data.

The original and SCC compressed and reconstructed TM images were
classified using the Maximum Likelihood Classifier (MLC) (Swain and

pDavis1l®). For comparison, the original TM image was also classified
using the Supervised Extraction and Classification of Homogeneous
Objects (SECHO) classifier (Kettig and Landgrebe®). The spectral

classes required by these classifiers were selected from clusters
generated by the ISOCLASS algorithm (Kan, Holley and Parker4) from
NASA GSFC's Land Analysis System (LAS). The ISOCLASS algorithm was
used on the entire TM test image to produce 64 clusters. It was also
used on areas of the image with a high proportion of the residential
and water/marshland ground cover classes to produce 16 and 32
additional clusters, respectively. The resulting 112 clusters were
reduced to 31 spectral classes based on visual inspection and
suppression of the most overlapping classes (within each ground cover
class). For our tests, four informational classes were de-fined:
Water/Marshland, Forest, Residential, and Agricultural/Domestic Grass.
The means and covariance matrices of the spectral classes were then
used to perform "supervised" classifications of the image using both
MLC and SECHO. The classified images were mapped into the four
information classes, and the resulting label images were compared
pixel by pixel with the ground truth 1label image to obtain the

classification accuracies.
Experimental Results

The LCPs for each of the seven bands of the TM test image are given

in Table 1. The average LCP across all bands is 2.76. This means
that the test image could be compressed by a factor of at least 2.76
(but probably not much more) without loss of any information. The

large value of the average LCP is primarily due to the large LCP for
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band 6 (6.47), the low resolution thermal band. The average LCP over
the six reflective (full resolution) bands is 2.14.

In Table 2 we show compression factors for the TM test data set
resulting from the SCC segmentation followed by encoding with blocks
of various sizes and run-length coding. The compression factor tends
to peak for an encoding block of size 21x21 or 42x42, with block
size 14x14 trailing close behind. The "Threshold" shown in the table
is the maximum NMSEi allowed in the SCC algorithm.

Table 1. Lossless Compression Potential (LCP) of the
7-Band Thematic Mapper Test Image.

Band
Band 1 2 3 4 5 6 7 Ave.
LCP 2.11 2.66 2.28 2.09 1.72 6.47 1.96 2.76
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Table 2. Compression Factors for Varying Encoding Block Size
for the 7-Band Thematic Mapper Test Image.

Encoding CF/

Threshold Block CF LCP*
0.1 42x42 6.21 2.25
" 21x21 6.36 2.30
" 14x14 6.13 2,22
" 7x7 5.02 1.82
0.2 42x42 13.6 4.93
" 21x21 13.6 4.93
" 14x14 12.5 4.53
" 7xX7 8.77 3.18
0.3 42x42 23.3 8.44
" 21x21 22.5 8.15
" 14x14 19.8 7.17
" 7x7 12.2 4.42

*LCP here is the Band Average LCP = 2.76.

The RNMSE image quality measure for three NMSE; thresholds is given in
Table 3 for the TM test data set. Classification accuracy
evaluations are given in Table 4 for the MLC algorithm for the
original and three cases of compressed TM data. For comparison, the
classification accuracy is also given for the SECHO classifier on the
original data. As can be seen by inspecting the accuracy figures in
Table 4, for the MLC algorithm the classification accuracies are
consistently as good or better for the compressed data than they were
for the original data. For most cases, the MLC classification
accuracies are better for the compressed data than the classification
accuracies for the SECHO classifier on the original data. In fact,
the classification accuracies obtained by running the MLC algorithm
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on the data that was compressed by a factor of 23.3 are consistently
better than the accuracies obtained by running either the MLC
algorithm or the SECHO classification algorithm on the original data!
We hypothesize that the SCC segmentation is behaving like a more
sophisticated homogeneous object extraction procedure than that used
in the SECHO classification algorithm.

Table 3. Reconstructed Image Quality
for the 7-Band Thematic Mapper Test Image.

CF/

Threshold RNMSE CF* LCP*
0.1 0.23 6.36 2.30
0.2 0.32 13.6 4.93
0.3 0.38 23.3 8.44

*This is the ‘maximum CF and CF/LCP over various encoding block

sizes.
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Table 4. MLC and SECHO Classification Accuracy Comparisons for the
7-Band Thematic Mapper Test Image (% correct classification).

MLC on MLC on MLC on MLC on SECHO on

Original CF*= CF*= CF*= Original

Class Image 6.36 13.6 23.3 Image
Water/Marsh 58.6 58.6 61.0 61.8 58.4
Forest 67.3 68.3 69.2 68.7 65.5
Residential 54.4 60.2 60.5 70.8 67.5
Ag./Dom. Grasses 84.9 85.9 86.6 85.9 83.5
Overall 80.0 81.1 81.8 81.3 78.7

*This is the maximum CF over the various encoding block sizes.

A subjective evaluation of the reconstructed TM images shows that
areas in the original image which are relatively homogeneous, but not
necessarily uniform, become completely uniform in the reconstructed
images. Low contrast spatial features are often 1lost 1in the
reconstructed images, but the higher contrast spatial features are
retained very precisely. Even very small spatial features are
retained if they have sufficient contrast relative to the surrounding
area. Further experiments are needed to verify whether the SCC
compression approach effectively retains all relevant scientific
information in Landsat TM data. The above results seem to indicate,
however, that this compression approach retains much of what would
seem to be the relevant scientific information.

The LCPs for each of the five bands of the CZCS test image are given
in Tables 5a and 5b. The average LCP across all bands of the entire
image is 1.89. However, the ILCP across all bands for a 486-by-504

pixel cloud-free section of data is 3.45.
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Table 5a. Lossless Compression Potential (LCP) of the
5-Band Coastal Zone Color Scanner Test Image
(Full scene - 486 lines by 1968 columns).

Band
Band 1 2 3 4 5 Ave.
LCP 1.90 1.78 1.71 1.50 2.57 1.89

Table 5b. Lossless Compression Potential (LCP) of the
5-Band Coastal Zone Color Scanner Test Image
(Cloud free section - 486 lines by 504 columns).

Band
Band 1 2 3 4 5 Ave.
LCP 3.00 3.18 3.04 2.35 5.69 3.45

In Tables 6a and 6b (full scene and cloud-free section, respectively)
we show compression factors for the CZCS test data set resulting from
the SCC segmentation followed by encoding with blocks of various sizes
and run-length coding. The compression factor tends to peak for an
encoding block of size 21x21 or 42x42, with block size 14x14 trailing

close behind.

The RNMSE image quality measure is given in Table 7 for the CZCS test
data set. These results are inconclusive, but a visual inspection of
the mean images produced by the SCC algorithm shows that the
algorithm behaves poorly only in the vicinity of the clouds. The
very high variance of the clouds cause the algorithm to segment very
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coarsely in the vicinity of clouds compared to elsewhere in the
image. Modifying the algorithm to use the variance of the whole image
rather than just the variance of the individual segmentation blocks in

calculating the variance normalized mean

Table 6a. Compression Factors for Varying Encoding Block Size
for the 5-Band Coastal Zone Color Scanner Test Image
(Full scene - 486 lines by 1968 columns).

Encoding CF/

Threshold Block CF LCP*
0.3 42x42 8.53 4.51

" 21x21 8.94 4.73

" 14x14 8.66 4.58

" 7x7 6.93 3.67

*LCP here is the Band Average LCP = 1.89.
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Table 6b. Compression Factors for Varying Encoding Block Size
for the 5-Band Coastal Zone Color Scanner Test Image
(Cloud free section - 486 lines by 504 columns).

Encoding CF/

Threshold Block CF LCPp*
0.3 42x42 3.92 1.14
" 21x21 4.14 1.20
" 14x14 4.11 1.19
" 7x7 3.64 1.06
0.5 42x42 9.86 2,86
n 21x21 10.5 3.04
" 14x14 10.9 3.16
" 7x7 7.58 2.20
0.7 42x42 24.2 7.01
" 21x21 23.7 6.87
" 14x14 21.0 6.09
" 7x7 13.0 3.77

*LCP here is the Band Average LCP = 3.45.

Table 7. Reconstructed Image Quality
for the 5-Band Coastal Zone Color Scanner Test Image

CF/

Scene Threshold RNMSE CF* LCP#*

Full scene 0.3 0.28 8.94 4.73
Cloud-free sec. 0.3 0.11 4.14 1.20
Cloud-free sec. 0.5 0.14 10.9 3.16
Cloud-free sec. 0.7 0.17 24,2 7.01

*This is the maximum CF or CF/LCP over the encoding block sizes.
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squared error (equation 7), should improve the behavior of the
algorithm. However, going back to our original premise of tailoring
our compression approach to the characteristics of the data, we
question the utility of pursuing this approach further for CzZCS data.

Except in the vicinity of clouds and land masses, the CZCS image data
generally has very little spatially variability. In the case of
ocean images, there are no distinct boundaries as seen in the case of
the land images (e.g., between a forested area and an agricultural
field as found in TM image data). Since the forte of the SCC approach
is the preservation of boundaries between contrasting regions, it may
make little sense to apply it to data, such as CZCS data, where such
boundaries aren't important. The only contrasting boundaries found
in CZCS data are between clouds and ocean, and land and ocean. The
users of CZCS data routinely mask out and discard cloudy data and data
collected over 1land using simple thresholding schemes. A more
appropriate compression approach may be to mask out the cloudy data
and data collected over land in the same way done routinely now by
the users of the data and use some variation on run-length encoding

to compress the remaining data.
CONCLUDING REMARKS

Given the resolutions and data rates expected from the remote sensors
to be flown during the next two decades, it will be necessary to
consider both lossless and lossy data compression techniques to keep
the transmitted data rates and archived data volumes within manageable
limits. Lossy techniques, wherein the raw data bits cannot be exactly
reconstructed, require careful studies in coordination with scientific
users to determine whether most of relevant information for a given
application is retained. Several such studies are needed in selected
disciplines and application areas. In this paper, we have presented
one such study using a compression technique which can be a precursor
to analysis and information extraction. The compression technique is
based on SCC and subsequent local encoding of regions. This is an
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adaptive vector quantizer where very short codebooks are needed and
are developed "on the fly" for local rectangular regions.

Since the SCC is a segmentation technique, it is a very useful
precursor to the analysis of image data with significant amount of
detail. The algorithm can be controlled with a single parameter to
obtain different degrees of segmentation (retaining different levels
of detail) and corresponding compression ratios. In our case study,
we have explored the use of the SCC with two types of data. The
first, a land image from the Landsat TM, has considerable spatial
detail while the second, an ocean image from the CZCS has no
recognizable features except clouds (which are usually suppressed in

performing any analyses).

For the case of the TM data, we found that land cover classification
accuracies are higher with compressed data than with raw data even up
to compression ratios over 20. This agrees with results from earlier
studies with other compression techniques such as the Cluster Coding
Algorithm (CCA). Further experiments are needed to verify whether all
relevant scientific information is retained by such compression
techniques. However, the present study confirms that for land cover
classification applications significantly compressed data can be used
directly, and in many cases, more usefully than raw data. In the case
of CZCS data, the image distortion measures and subjective image
evaluation show that compression ratios of 4 to 24 can be achieved
with relatively small distortions. Further experiments on derived
geophysical parameter data are needed to examine the impact of
compression on the analysis of C2ZCS data. However, given the nature
of the CZCs data it is probably more fruitful to consider other
compression techniques such as linear prediction and run 1length

encoding.
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A RECURSIVE TECHNIQUE FOR ADAPTIVE VECTOR QUANTIZATION

Robert A. Lindsay
Unisys Corporation

ABSTRACT

Vector Quantization (VQ) 1is fast becoming an accepted, 1if not
preferred method for image compression. VQ performs well when
compressing all types of imagery including Video, Electro-Optical
(E0), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral
(MS), and digital map data. The only requirement is to change the
codebook to switch the compressor from one image sensor to another.
However, codebooks can be difficult to design because data may not be
available or may not accurately represent the pdf. This stimulates
the need for an algorithm that can simultaneously design a codebook

while vector quantizing the data.

There are several approaches for designing codebooks for a vector
quantizer. The most common algorithm being the LBG or generalized
Lloyd. Entries in the codebook represent the centroid of the data
that is associated with a respective Voroni region. A quantizer is
uniquely defined by the codebook centroids and the distortion metric.
The LBG algorithm is used to minimize the overall distortion of the
quantizer by iteratively moving the centroids and computing the new
distortion until the quantizer converges on a local minimum. Previous
implementations of the LBG algorithm compute the centroid by adding
all the vectors in the Voroni region and then dividing by the number
of vectors. This is done iteratively on a sample of source data

referred to as a training sequence.

Adaptive Vector Quantization is a procedure that simultaneously
designs codebooks as the data is being encoded or gquantized. This is

done by computing the centroid as a recursive moving average where the
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centroids move after every vector is encoded. When computing the
centroid of a fixed set of vectors the resultant centroid is identical
to the previous centroid calculation. This method of centroid
calculation can be easily combined with VQ encoding techniques. The
defined quantizer changes after every encoded vector by recursively
updating the centroid of minimum distance which is the selected by the
encoder. Since the quantizer is changing definition or states after
every encoded vector, the decoder must now receive updates to the
codebook. This is done as side information by multiplexing bits into

the compressed source data. It is important to note that the
quantizer converges in much the same way as the LBG algorithm
converges. For stationary data sources the centroids will become
fixed and the side information will not be necessary. For non-

stationary sources the side information can be used to allow the
quantizer to adapt to the data, thereby providing an Adaptive Vector
Quantizer. Important issues to consider are the rate of convergence,
start-up distortion or rate overhead, and tracking non-stationary

sources. These issues will be addressed in a forthcoming publication.
ACKNOWLEDGEMENTS

This work was partially supported by Unisys Corporation
through the University of Utah Center for Communications Research.

338



Vector
Codebook

Vector Input

P

o

Find
Closest
Vector

Vector Quantization Encoding

339

Index



Vector
Codebook

Index Pixels

Vector Quantization Decoding

Present Implementation of VQ
e Acquire data from sensor
e Design a codebook

e Implement a search technique

Acquire Data from the sensor
e Expensive
e Classified
e Not possible

e Poor representative
(start over)
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Codebook Design
e Exhaustive Search
e Generalized Lloyd (LBG)
e K-means

e Simulated Annealing

e Pairwise Nearest Neighbor (PNN)

One Dimensional Lloyd’s Algorithm
e Determine PDF of source
e Solve Equations
-q:yﬂﬂ 17=2,..,N

— =z —y)p(e)dz=0 j=1,.,N
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Generalized Lloyd using a training sequence

e Acquire training sequence
(lots of samples of source data)

e Create vectors by grouping samples
(maximize correlation)
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Vector
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® Design codebook

1. Initialize codebook

Place a set of quantization points in the vector space

2. Encode training sequence

Assign each vector from the training sequence to the closest
quantization point

|
| 3. Reassign codebook

Compute the centroid of each set of training sequence vectors assigned
to a codebook vector and reassign the codebook to be these new
centroids

4. Iterate 2 and 3

Iterate until no change (or minor change) to the overall distortion

(a) (b) (c)

o ) 0
X x X X Q&x X xs X X X X
(o] --1 [o] --.1 (v} --.1

o - code vector x - training vector ©- centroid
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Encoding the Source Vectors
Using Full Search

e Compute the quantization error (distortion)
between the source vector and each vector
in the codebook

e Replace the source vector with the index
to the vector of minimum distortion
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Tree

M-branches/level

345



NON-UNIFORM BINARY TREE SEARCH

Each level computes §- 7(7) S T(7) where
o 5(5) = Ca(5) — Ci(7)

 7(j) = LG - IGG)
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Adaptive Vector Quantization

e Combines principles of codebook design with
encoding

e Requires no source samples of data to start
(training sequence)

e Removes logistics problem of changing code-
books
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Recursive Codebook Design
e Initialize codebook vectors

e Encode a source vector as before by looking
at each entry in the codebook and choosing
entry of minimum distortion

e Update the codebook vector after every en-
coded source vector

® Send Achange as side information

Changing Codebook Values

e Codebook entries are the centroids of the
Voroni region

e Centroid computation

1=

2. Cn = ﬁ;—lC'n_l + "l;$n n= 0, 1, ...,N

e Codebook is a set of changing centroids

—n-1 1 —_—

— n2—1 1 —

— ny-—1 1 —
Ynpy = “;‘f;—ynM—l + ;;xnu ny = 0’ 17 e

e Centroids converge in much the same way
as the Generalized Lloyd algorithm
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Things to Consider
e Start-up

— Increase rate
— Increase distortion
— Reset

e Convergence
e Register overflow

— N counts

— o divides
e Overhead for side information
e Performance

e Stationarity of source
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FRACTAL IMAGE COMPRESSION

Michael F. Barnsley and Alan D. Sloan

Mathematics, Georgia Tech
ABSTRACT

Fractals are geometric or data structures which do not simplify under
magnification. Fractal 1Image Compression is a technique which
associates a fractal to an image. On the one hand, the fractal can be
described in terms of a few succinct rules, while on the other, the
fractal contains much or all of the image information. Since the
rules are described with less bits of data than the image, compression

results.

Data compression with fractals is an approach to reach high
compression ratios for large data streams related to images. The high
compression ratios are attained at a cost of large amounts of
computation. Both 1lossless and lossy modes are supported by the
technique. The technique is stable in that small errors in codes lead
to small errors in image data. Applications to the NASA mission are

discussed.
OVERVIEW

Fractals are geometric or data structures which do not simplify under
magnification. Fractal 1Image Compression is a technique which
associates a fractal to an image. On the one hand, the fractal can be
described in terms of a few succinct rules, while on the other, the
fractal contains much or all of the image information. Since the
rules are described with less bits of data than the image, compression

results.

Fractal image compression is a computationally intensive technique.
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However, the computations required are mainly multiplications and
accumulations and iterative in nature. The rules consist of 1low
dimension matrix transformations. Therefore, high speed hardware
implementations are possible. A hardware decoder was demonstrated in
October, 1987, This prototype device can decode 256 X 256 x
8bits/pixel images at a rate of several frames per second. It

demonstrates the feasibility of higher performance decoders.

The Collage Theorem, described in the next section, provides the
connection between rules and images. It allows for the complete
control of the fidelity of the encoded image. Compression ratios in
the lossy mode are typically much higher than in the lossless mode.
The association between fractals and images is a continuous one in the
following sense: small changes in the matrices produce small changes

in images.

The observation that a simple set of rules can produce a complex
image began with abstract fractal pictures known as Julia sets. The
Georgia Tech mathematics research team set out to explore the limits
of this observation. The exploration took the form of a search for a
solution to an "inverse" problem (e.g., given an image, find the rules
which encode it as a fractal). The Collage Theorem is a remarkable
solution to this inverse problem. High resolution, color images have

been encoded in several thousand bytes.

Basic research in this technique at Georgia Tech and other
universities has been supported by DARPA, AFOSR, NSF and ONR. Georgia
Tech was specifically funded under the Applied and Computational
Mathematics Program of DARPA to investigate automation of this
technique using simulated thermal annealing algorithms. While basic
research continues, a number of corporations are investigating
applications of this technique. 1In particular, Iterated Systems, Inc.

was formed to commercialize this technology.
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THE TECHNIQUE
Fractal Image Compression Codes

The code for an image which has been subjected to fractal image
compression consists of an iterated function system (ifs). An ifs is
composed of affine transformations and probabilities. In two

dimensions, an affine transformation, T, takes the form

T(x,y) = (x',y')
where x' = Ax + By + C
and y'! = Dx + Ey + F

The six coefficients A,B,C,D,E,F define T and must be specified in
log(resolution) bits. For example, 100 affine transformations on a
1024 x 1024 screen require 100*6*10 bits. Affine transformations
consists of scalings, rotations and translations and so have a
geometrical interpretation. The affine transformations which appear
in ifs codes should be contractive in the following sense. If |P-Q]
denotes the Euclidean distance between two points, P and Q, and if T

is a contractive transformation, then
[T(P) - T(Q)]| < s * |P-Q]
where the contractivity factor s < 1.

The probabilities form a linkage matrix used in the decoding process.
In the most common usage to date, only one probability is specified
for each transformation and these may be specified in log(number of
colors) bits. A color look-up table must also be specified for use in
the decoder. Typically, several color values are given and linear
interpolation is used to generate intermediate colors. In typical
examples this can be done in less than log(number of colors) bits/map.

Thus, encoding a 1024 x 1024 x 9 bits/pixel image in N maps results in
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a code of length 72*% N bits. As an example, choosing N = 100 results
in a length of 7200 bits. The original image is 1024 * 1024 * 9 bits
so the compression ratio exceeds 1000 : 1.
Some ifs codes are given on Tables 1-4.
Hausdorff Image Distance
Precise statements concerning fractal image encoding and decoding
refer to the Hausdorff distance between images. Fix a screen, S,
consisting of R rows with P pixels/row. A monochrome image (1
bit/pixel) is simply a collection, I, of pixel sites on the screen
which are illuminated. The distance from a screen location a to an
image B is defined as the closest Euclidean distance. That is,

d(a,b) = minimum { |a-b] : for b in B}).
The distance from an image A to the image B is given by

d(A,B) = maximum { d(a,B) : for a in A}.

This max-min type distance function is not symmetric. That is, d(A,B)
may not coincide with d(B,A). See Figure 2.

The Hausdorff distance between A and B is

H(A,B) = maximum { d(A,B), d(B,A)}.
If the Hausdorff distance between two images is zero, then the images
are identical. If the Hausdorff distance is less than the resolution
of the screen, the two images are indistinguishable.
The Hausdorff distance definition may be generalized to color and

grey-scale images by viewing the color information as a third

coordinate. From this point of view, images are surfaces and the
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Hausdorff metric is used to measure distances between surfaces.
The Decoder

An ifs code can be thought of as an image processing operation. Let C
be an ifs code consisting of the affine transformations T1, T2, ...,
Tn. If R is any image, then Ti(R) means the image under Ti of all
the points in R. C(R) is then defined by

C(R) = T1(R) U T2(R) U ... U Tn(R).

As an example, let the image R consist of one point and suppose the
code consists of two transformations. Then typically, C(R) will
consist of two points. Starting now with C(R), C(C(R)) will typically
consist of four points. Since, however, the affine transformations in
an ifs code are contractions, a transformation may coalesce several

points into a single point.

Associated to every ifs code is a unique set called the attractor of
the code. The attractor A = attr(C) of the ifs code C is defined as
the only set with the property that

A =T1(A) U T2(A) U ... U Tn(A).

The maximum of all the contractivity factors of the affine
transformations in an ifs code is the called the contractivity factor
of the code.

Let A(0) be any non-zero subset. Inductively define A(i) =
C(A(i-1)). Then the sequence A(0), A(l), A(2) converges to the
attractor A of the ifs code C, in the Hausdorff metric. That is, as i
gets large H(A(i), A) becomes small. For typical examples, the
Hausdorff distance becomes less than screen resolution when i is

between 10 and 50.
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The attractor attr(C) associated with the code C is, in this way, the

image encoded by the code C.

Figure 3 illustrates the decoding process for a four transformation
code corresponding to a fern. The initial rectangle which initiates
the decoder does not affect the attractor. It could just as well be a
sin curve or a random screen. Thirty iterations separate the initial

and final images.

The Encoder

The basis for fractal image encoding is the COLLAGE THEOREM: Let B be
a target image and let C be an ifs code with contractivity factor
0 < s < 1. If the Hausdorff distance between B and C(B) is less than
E then the Hausdorff distance between B and attr(C) is less than E/(1-

s).

This theorem says that to find the ifs compression code for an image
or image segment, one can solve the following puzzle. Small (affine)
deformed copies of the target must be arranged so that they cover up
the target as exactly as possible. This "collage" of deformed copies
determines an 1ifs code since each deformation is an affine
transformation of the target. The better the collage, as measured by
the Hausdorff distance, the closer will be the attractor of the ifs to

the target.

Application of the collage theorem so that E < (1-s)*resolution
assures a lossless compression. One can search for transformations
which have contractivity factors < .7, for example. Then lossless
compression requires E to be less than .3*resolution. More generally,
upper bounds on contractivity produces a priori bounds on the errors

in the encoded image during the encoding process.

Another consequence of the collage theorem is that if the matrix

entries in two codes are close then the attractors of the codes are
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also close. This has an important interpretation related to error

propagation. Small errors in codes lead to small error in images.
Figures 4 and 5 demonstrate the collage theorem.
NASA APPLICATIONS

Data compression can provide service to the NASA mission in both

space based and ground based operations.
Data Quality

One issue which arises in space and ground use of lossy compression is
that of data quality. Common measures of error in reconstructed data
are based on mean-square or root-mean square computations. This type
of error calculation is often chosen for convenience, rather than for
scientific merit. Scientific analyses attempt to compensate for
spatial errors through a registration procedure. Fractal image
compression has focused on a different error metric, the Hausdorff
distance. It integrates both spatial and spectral data distortion
into a single measure of error. Evaluation of the Hausdorff distance
as a relevant discriminant of data quality can begin immediately using

existing experiment data.

Compression procedures are generally sensitive to transmission bit
errors. Sensitivity generally increases with increasing compression
ratios. Most high compression ratio techniques are therefore risky in
a noisy environment. Fractal image compression contains error
propagation independently of the source of the errors. As discussed
above the collage theorem provides bounds on the error in the
reconstructed data from bounds on errors in the codes. This error

containment need not suffer with increased compression ratios.
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Scientific Utility

The capture of data from space sensors or experiments and its
transmission to earth is a major NASA activity. Often this data is
destined to be analyzed by scientists in the form of images. Space
sensors and experiments can easily produce enough image data to
overload all available data communication bands to earth. Twice as
much two-to-one compressed data as uncompressed data can Dbe
transmitted in the presence of a bandwidth bottleneck. Fractal
compressed images can provide orders of magnitude more images through
a bandwidth bottleneck. To achieve 1000-to-1 compression on 1024 x
1024 images, subsampling, for example, would produce 32 x 32 images.
Such coarse images may not be of any use to a scientist. Fractal
image compression can be used by a scientist to achieve such
compression and yet be structured so as to retain certain recognizable
features on a fine scale. While such high compression ratio encoding
may not be of universal interest, scientists should be given the

choice.

High data rate sensors may be operational for only a small percent of
their lifetime due to bandwidth bottleneck. Fractal image compression
can use additional sensor data during the compression process to

increase the quality of the transmitted data.

While cost of storage media decreases and read/write speeds and
bandwidth increases, these trends are not able to match the increase
in available data. As a consequence, data compression should form an
important part of any data management system. Moreover, even given
unlimited and inexpensive memory and bandwidth, image analysis would
remain as an outstanding problem of overriding importance. Fractal
image compression does not simply produce an unintelligible code from
uncompressed data. Rather, fractal codes themselves contain geometric
and measure-theoretic information about the data sets. Analysis of an
image can, in part, be done on the compressed code. In partic. .ar,

experiments with texture and object identification and classification
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based on compressed codes can begin with existing experimental data.
Data Management

Interactive access to scientific data increases its usefulness.
Users often do not have a specific data address to examine but rather
wish to browse through data samples of a generic type. In the
browsing mode, only accuracy to some level of detail is required.
Fractal image compression can provide interactive browsing on existing
networks by simulating a virtual bandwidth orders of magnitude higher
than the actual bandwidth.

The proper packaging of data increases its usefulness. Vast amounts
of data can be easily interpreted when viewed as animation. High
quality animation, however, places an enormous burden on existing and
projected communication links. Fractal image compression provides an
efficient format for animation. The collage theorem guarantees that

animation can be accomplished through small changes in codes that are

already highly compressed. Fast decoders will be required to view
the animation at video rates. A prototype decoder was displayed in
October, 1987 at DARPA's ACMP conference in Washington, D.C. It

demonstrated the feasibility of higher performance video rate

decoders.
Scientific Justification

The nature of the data collected by space sensors suggest a vast
potential for compression, well beyond that indicated by standard
entropy calculations. Much of the data is collected from repeated
observations over similar areas. Multispectral data is expected to be
correlated over multiple channels. The data itself, generated by
natural laws, though complex is far from random. As a concluding
example, consider the data in Figures 6-9. These graphs of voltage as
a function of time measure laser scattering and voltage across a wire
in a turbulent jet experiment. Both data streams, which come from the
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probes of a single system yield the same fractal dimension,

1.5 as

indicated in Figure 9. Such correlations are not exploited in
classical compression schemes. Fractal image compression can find the

hidden redundancy suggested by such data.
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Then Table 1 is a tidier way of conveying the same iterated function system.

=A,x+t|.

w a b ¢ d e f P
1 0.5 0 0 0.5 1 1 0.33
2 0.5 0 0 0.5 1 50 0.33
3 0.5 0 0 0.5 25 50 0.34
TABLE ] IFS code for a Sierpinski triangle.
w a b c d e f P
1 0.5 0 0 0.5 1 1 0.25
2 0.5 0 0 0.5 50 1 0.25
3 0.5 0 0 0.5 1 50 0.25
4 0.5 0 0 0.5 50 50 0.25
TABLE 2 IFS code for a Square,
w a b c d f [
1 0 0 0 0.18 0 0.01
2 0.85 0.04 -0.04  0.85 1.6 0.85
3 0.2 -0.26 0.23 0.22 1.6 0.07
4 -0.15 0.28 0.26 0.24 0.44 0.07
TABLE 3 1FS code for a Fern.
w s b c d f P
1 0 0 0 0.5 0 0.05
2 0.42 -0.42 0.42 0.42 0.2 0.4
3 0.42 0.42 -0.42 042 0.2 0.4
4 0.1 0 0 0.1 0.2 0.15

TABLE 4 IFS code for a Fractal Tree .
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ILLUSTRATION OF DECODING

3.1 is an initial computer screen. This initial state can be chosen at random but in this example it
is a small square, in the upper left hand corner of the screen. Four affine transformations are
applied to each point in the square and give the four parallelograms in 3.2. AO is the initial square.
The image A1 is the four parallelograms in 3.2. The same four transformations are applied to each

of the parallelograms in 3.2 and produce A2 in 3.3 which consists of sixteen parallelograms. Some
intermediate screens are not shown. After about thirty iterations the fern appears in Figure 3.10.
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(b) Attractor

Two applications of the collage
theorem. (a) and (c) are collages
of a leaf under affine transforma-
tions. Four transformations are
used in each case. The Hausdorff
distance between the collage and
the target leaf is smaller in (a)
than in (c). (b) is the leaf
reconstructed from (a) while (Q4)
is reconstructed from (c). The
reconstruction from (a) to (b) is
superior than that from (c) to (d)

as suggested by the collage theorem.

Figure 4

Collage of four similitudes.
Target leaf is outline in solid
stroke. Affinely deformed copies
have broken outlines.

Decoded leaf from collage above.

Figure 5
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NOISELESS COMPRESSION USING NON-MARKOV MODELS

Anselm Blumer
Computer Science Department
Tufts University

ABSTRACT

Adaptive data compression techniques can be viewed as consisting of a
model specified by a database common to the encoder and decoder, an
encoding rule and a rule for updating the model to ensure that the
encoder and decoder always agree on the interpretation of the next
transmission. The techniques which fit this framework range from run-
length coding, to adaptive Huffman and arithmetic coding, to the

string-matching techniques of Lempel and Ziv. The compression
obtained by arithmetic coding is dependent on the generality of the
source model. For many sources, an independent-letter model is

clearly insufficient. Unfortunately, a straightforward implementation
of a Markov model requires an amount of space exponential in the
number of letters remembered. The Directed Acyclic Word Graph (DAWG)
can be constructed in time and space proportional to the text encoded,
and can be used to estimate the probabilities required for arithmetic
coding based on an amount of memory which varies naturally depending
on the encoded text. The tail of that portion of the text which has
been encoded is the longest suffix that has occurred previously. The
frequencies of letters following these previous occurrences can be
used to estimate the probability distribution of the next letter.
Experimental results indicate that compression is often far better
than that obtained using independent-letter models, and sometimes also
significantly better than other non-independent techniques.

INTRODUCTION

Adaptive data compression techniques are useful when the statistics

of the data are not known in advance or are changing slowly. This
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paper surveys some well-known adaptive compression techniques and
presents two new methods which give improved compression in many
cases. All techniques presented are lossless (or noiseless) in that
an exact copy of the original data can be obtained by decompressing
the output of the compression algorithm. The data is assumed to be a
string of characters from an arbitrary alphabet, though many of the
ideas presented here could be applied to images or other

multidimensional data.

An adaptive compression technique can be viewed as consisting of

three parts:

1) A dictionary or database which defines the current state of
the model.
2) A coding rule which determines how the encoder transmits

the next part of the string and how the decoder
interprets the encoder's message.

3) An adaptation rule which determines how the encoder and
decoder update the model to reflect the previous

transmission.

If the encoder and decoder initialize their models identically, they
can maintain identical copies of the model throughout the transmission

by using the same adaptation rule.
RUN-LENGTH CODING

The simplest compression technique which fits this framework is
probably run-length coding. 1In this case, the dictionary consists of
the single character which forms the current run. The coding rule

encodes the number of times this character is repeated, followed by an

encoding of the next character. For example, if the encoder's and
decoder's dictionaries are initialized to "a", the data string
"ccccabbb" could be transmitted as (0,c) (3,a)(0,b)(2,b). Since the

initial character in the dictionary is "a", (0,c) is interpreted as no
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"a's followed by at least one "c". The "c" then replaces the "a" in
both dictionaries. (3,a) then indicates a run of 3 more ."c"s followed
by an "a". (0,b) indicates that this "a" is followed immediately by a
"b", and (2,b) can be interpreted to mean that the end of the string
has been reached after two more "b"s, since there would not ordinarily

be two consecutive runs of the same character.
LEMPEL-ZIV CODING

A more interesting adaptive compression technique was developed by
Lempel and Ziv while investigating a complexity measure for
strings(4). In this case, the dictionary consists of that portion of
the data string which has already been transmitted. The encoder is
allowed to specify any substring of this string by transmitting an
index and a length. The encoder parses off the longest prefix of the
part of the data which has not yet been transmitted which matches a
substring of the previously transmitted data. This is complicated by
the fact that the encoder and decoder add letters to their dictionary
strings as this matching is being done, allowing the matching
substrings to overlap each other. The encoder then transmits the
index of the previous substring, the length of the match, and the
first character which caused the match to fail. If the data string is
"abcabbcabbcb" and "abc" has already been transmitted the encoder's
next transmission would be (1,2,b) indicating a match of 2 letters
starting at position 1, followed by a "b". The encoder and decoder
would then concatenate "abb" to their dictionaries, giving "abcabb".
Using the overlap mentioned above, the encoder can now transmit the
rest of the string as (3,5,b). If the 5 was replaced by a larger
number, this would indicate further repeats of the pattern "cabb", so
this technique can be viewed in part as a generalization of run-length
coding, where runs are allowed to consist of repeated patterns rather

than just repeated single characters.

More recently, Z2iv and Lempel have developed another adaptive
compression technique based on string matching(7). To avoid the
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complexity inherent in using both a pointer and a length to refer to
any previous substring, the dictionaries for this newer method consist
of only those substrings which have been parsed and transmitted by the

encoder. The prefix parsed by the decoder must match one of these
substrings. The decoder then transmits a code number for that
substring and the next character. (Variations of this technique avoid

the explicit transmission of the next character by methods such as
initializing the dictionaries to contain all single-character
strings(5), The adaptation rule then adds the most recently
transmitted to the dictionaries. For example, if the first eight
characters of "aabaaabaaabb" have been transmitted, the dictionaries
consist of the strings "a", "ab", "aa", and "aba", numbered 1, 2, 3,
and 4, respectively. The encoder will then parse "aa" and transmit
"aab" as (3,b). ‘"aab" is then added to the dictionaries as string 5.
The final "b" is then transmitted as (0,b), since it does not match
any dictionary string. This technique works quite well in practice,
as is evidenced by popularity of the UNIX (TM) "compress" command.
One slight drawback is that runs of repeated patterns can no longer be
parsed all at once, even when the pattern is only the repeated

occurrence of a single character.
A GENERALIZATION OF RUN-LENGTH CODING

Another way to avoid transmitting both a pointer and a length is to
use an implicit pointer which can be computed by both the encoder and
decoder (1), This can be done using a data structure known as the
Directed Acyclic Word Graph (DAWG), a data structure which stores
information about all substrings of a string in space proportional to
the length of the string and can be built in time proportional to this
length (linear space and time) (2/3), The linear-time construction
algorithm always maintains a pointer to the longest suffix that has
occurred elsewhere in the string. This suffix is known as the "tail".
The previous occurrence of the tail can be used as the implicit
pointer mentioned above. The encoder locates this previous occurrence

(which is uniquely defined by the DAWG construction algorithm) and
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predicts that the next character to be transmitted will be the same as

the character which follows this previous occurrence. If this
prediction 1is correct, the DAWG is then updated by adding this
character and another prediction is made based on the new tail. This

process continues until a prediction fails, at which point the encoder
transmits a count of the number of correct predictions and the actual
character for the first prediction which failed. For example, if the
data string is "aababaabaa" and the first five characters have already
been transmitted, then the tail is "ab" and the prediction is that the
sixth character is "a". This is correct, so the "a" is concatenated
to the string and the DAWG is updated. The tail is now "aba", which
predicts a "b". This is incorrect, so the encoder's transmission is
(1,a). The next predictions are "b", "a", and "b", of which the first
two are correct, so the next transmission is (2,a). With this
technique any sufficiently long repeated pattern can be parsed in a
single transmission, so it will act like a generalization of run-

length coding in these cases.
ARITHMETIC CODING WITH DAWG-BASED MODELS

Although  experimental results with this 1last technique were
encouraging, it can be shown to be asymptotically nonoptimal for a
wide variety of data sources. Fortunately, the information available
from the DAWG can be used in combination with arithmetic coding(6),
resulting in a technique which is both asymptotically optimal and
gives good results in the cases where the above technique worked well.
Arithmetic coding, like Huffman coding, is based on using estimates of
the probabilities for the next character to encode that character. An
adaptive arithmetic encoder will revise these estimates as each letter
is transmitted. If the characters are statistically independent, a
table of frequencies for each character will provide these estimates.
In most cases, characters are strongly dependent, so a more
sophisticated model is needed. The most natural next step is to use a
Markov model of order m, where the probabilities of the next character

depend on the previous m characters. There are two problems with

371



this: the amount of space needed to store the probability estimates is
exponential in m, and the ideal m may change as the characteristics of
the data change. Both of these problems can be solved by using a DAWG
to store the frequency counts and using the previous occurrence of the
tail to provide the appropriate amount of context. Using just the
frequency counts from the DAWG gave good compression in many cases,
but worked very poorly when the data contained long runs. The reason
for this is that in a long run there will be relatively few previous
occurrences of the tail, so the next character is not predicted with
great certainty. When the probabilities were modified to take into
account the 1length of the tail, the performance improved greatly in

these cases.

EXPERIMENTAL RESULTS

Filetype Filesize ARITH LZW GRL DAWGARITH
Commands 347 253 200 184 142
C Program 1729 1160 840 603 515
Object Code 3890 2585 2096 2544 1759
Load Module 49152 29.47 23544 27774 18168
Font File 16384 906 478 384 263
This Report 15945 9528 7810 10982 8809

Numbers are number of bytes before and after compression.
ARITH is the adaptive arithmetic coding algorithm from(6) .
LZW is the UNIX (TM) "compress" command (3) .

GRL is the generalization of run-length coding from(1l) .

DAWGARITH is the last technique described above.
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APPENDIX: THE DAWG CONSTRUCTION ALGORITHM

The DAWG is a Partial Deterministic Finite Automaton (PDFA) which
recognizes the set of all substrings of a word. If the word has
length n, the DAWG will have less than 2n nodes and 3n edges. It can
be built online in linear time using some auxiliary edges (one per
node) called suffix pointers. Fach node corresponds to the class of
strings labeling the paths from the source to that node. The longest
such path is called primary. The destination of the suffix pointer of
a node is identified by removing the first letter from the label of
the shortest path from the source to that node. Thus the suffix
pointer of the sink node can be used to identify the longest suffix

which occurs somewhere else in the string (the "tail").
The pseudo-C code below updates a DAWG for a word, w to a DAWG for
wa. It assumes that wa is stored in a global buffer, and that "index"

is the position of the letter a in this buffer. Each node contains:

position: a buffer index pointing to the letter labeling edges to

that node
depth : the length of the primary path from the source to that
node
edges ¢ a linked list of outgoing edges, and
suffix : the suffix pointer for that node
"source" and '"currentsink" are global variables. The following

auxiliary procedures are needed:

allocnode( position, depth ) allocates and returns a pointer to a
new node

allocedge( node, edgelist ) adds to "edgelist" an edge which
points to "node"

findedge ( node, letter ) returns a pointer to an outgoing edge
from "node" labeled "letter", or NIL if no such

edge exists
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unlist ( edgelist, node ) removes an edge pointing to "node"

from "edgelist"

update( ch, index )

char ch; /* ch is the character pointed to by index */
unsigned index; /* index points into the text buffer */ {

/* make a new node, "newsink", and make an edge to

/* this node from "currentsink", the old sink. */

newsink = allocnode( index, index+1 );

edges ( currentsink ) = allocedge( newsink, edges( currentsink ) );

suffixnode = source; /* the default value */

/* follow chain of suffix pointers from currentsink #*/
for (currentnode = suffix( currentsink ); currentnode ISNT NIL;

currentnode = suffix( currentnode ) ) {

/* no edge with this character, so make a secondary edge to
"newsink" */ if ((Edge = findedge( currentnode, ch )) IS NIL)
edges( currentnode ) =
allocedge( newsink, edges( currentnode ) ):

/* a secondary edge labelled "ch", so split */
else if ((depth(currentnode)+1l) ISNT depth(node(Edge))) (

/* Make Edge into a primary edge to a new node */
childnode = node ( Edge );
newchildnode = allocnode( index, depth(currentnode)+1 ):
edges( currentnode ) = unlist( edges( currentnode ), childnode
) : edges( currentnode ) =
allocedge( newchildnode, edges( currentnode ) );

/* Give a copy of each of childnode's edges to newchildnode */
for (Edge = edges( childnode ); Edge ISNT NIL; Edge = next( Edge

375



)) edges( newchildnode ) =

allocedge( node( Edge ), edges( newchildnode ) ):
/* Set the suffix pointer of newchildnode to that of childnode,
/* and reset childnode's to point to newchildnode */
suffix( newchildnode ) = suffix( childnode );

suffix( childnode ) = newchildnode;

/* follow chain of suffix pointers, changing secondary edges

/* which point to childnode to point to newchildnode */
suffix( currentnode ); currentnode ISNT NIL;

for (currentnode
currentnode = suffix( currentnode )) ({
if ((Edge = findedge( currentnode, ch )) IS NIL) break;
if ((depth(currentnode)+1) IS depth(node(Edge))) break;
edges( currentnode ) = unlist( edges( currentnode ), node( Edge ) );
edges( currentnode ) =
allocedge( newchildnode, edges( currentnode ) );
}
suffixnode = newchildnode;
break;

}

/* otherwise, it's primary, so set suffixnode and break out */
else {
suffixnode = node( Edge ):;

break:;

}
/* set the suffix of newsink to be the node the above "for" loop found

*/ suffix( newsink ) = suffixnode;

currentsink = newsink;

)

\ *7 %
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PERFORMANCE OF LEMPEL-ZIV COMPRESSORS WITH
DEFERRED INNOVATION

Martin Cohn
Computer Science Department

Brandeis University
INTRODUCTION

The noiseless data-compression algorithms introduced by Lempel and
ziv(6:7) parse an input data string into successive substrings each
consisting of two parts: The citation, which is the 1longest prefix
that has appeared earlier in the input, and the innovation, which is
the symbol immediately following the citation. In ‘"extremal"
versions of the LZ algorithm the citation may have begun anywhere in

the input; in "incremental" versions it must have begun at a previous

parse position. Originally the citation and the innovation were
encoded, either individually or jointly, into an output word to be
transmitted or stored. Subsequently, it was been speculated by

several authors(2’4’5’7) that the cost of this encoding may be
excessively high because the innovation contributes roughly 1lg(A)
bits, where A is the size of the input alphabet, regardless of the
compressibility of the source. To remedy this excess, they suggested
storing the parsed substring as usual, but encoding for output only
the citation, leaving the innovation to be encoded as the first symbol
of the next substring. Being thus included in the next substring, the
innovation can participate in whatever compression that substring
enjoys. We call this strategy deferred innovation. It is exemplified
in the algorithm described by welch(5) and implemented in the C
program compress that has widely displaced adaptive Huffman coding
(compact) as a UNIX system utility.

While compress achieves respectable compression ratios on highly
" compressible data (say two~to-one or better), it performs poorly,
compared to theory and to other versions of LZ compression, on
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relatively incompressible data. In the extreme of total
incompressibility, such as uniform i.i.d. or well encrypted data,
compress frequently expands the input by about 45% when the output
word size is 12 bits and by about 90% when the output word size is 16,

to mention two common options.?2

These figures stand in contrast to LZ realizations without deferred
innovation, where random data are expanded by about 5% for output
words of 12 or more bits. The purpose of this paper is to explain the
excessive expansion, and implicitly to warn against the use of

deferred-innovation compressors on nearly incompressible data.

Suppose a deferred-innovation LZ algorithm operates on a string of b-
bit input characters producing B-bit output words,3 and assume that as
in most implementations the dictionary of citations is initialized
with all the individual symbols of the input alphabet. For an input

string "x y x z . . ." such an algorithm will output B bits for the
first "x", and store "xy"; then output B bits for "y", and store
"yx"; then output B bits for "x", and store "xz"; and so on. In

general, B bits will be output for every position that initiates a
novel pair, that is, a pair not seen earlier. What we shall show in
the next part of the paper is that if the input length is much less
than the square of the alphabet size, the "typical" string of length N
has almost N novel pairs, and therefore the output length must be
almost NB, and the compression ratio almost B/b. Now, when the input
is a string over the alphabet of 256 bytes, the input length would
have to be comparable to 216 to avoid this condition; otherwise the
compression ratio will likely be close to 12/8 = 1.5 or 16/8 = 2.0 for
common choices of B. This is just the behavior mentioned above for

the program compress. The "typical" string is generated by a uniform

2 In default mode, compress refuses to recode a file doomed to
expansion.

3 While ideally this output word would be variable in length, it

is easy to show that not much is gained by the complication, so we
shall conform to practice and make the wordlength fixed.
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independent source over the alphabet, or selected uniformly from

among all the possible strings of length N.

We say an ordered pair of consecutive input symbols is novel if and
only if the identical ordered pair has not appeared earlier in the
input string. Let S;i(A,N) be the number of strings of length N over
an alphabet of size A, with a novel pair beginning at position i. The
pair beginning in position i can be repeating, 1like "xx", or
nonrepeating, 1like ‘"xy". Thus Sji(A,N) consists of two parts,
according to whether the novel pair at position i is repeating or not;

see Figure 1.

XX
XXX
-i=-2-= t -en-1i-1-
position i
Xy '
Xy
-i-1- en-4i-1-
FIGURE 1
Clearly Si(aA,N) = AN, and
sia,N) = (a - 1JaV 1" pa,i - 2) + (a - na¥iE@,i - 1),
where D(A,i-2) counts strings of length i-2 containing no "xx", and
E(A,i-1) counts strings of length i-1 containing no "xy", while x and
y range over the alphabet. (We assume the indices are nonnegative and

take D(A,0) = E(A,0) =1 by convention).

Figure 2 shows, for the respective processes (or languages) that
contain no repeating pair "xx" or no nonrepeating pair "xy", the
state diagrams, adjacency matrices, characteristic equations, and the

latters' roots. ..
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2 2
FIGURE 2
From linear theory,

D(A,k) = d,.8K + d_8K and E(a,k) = ejek + e_ek,
where d; ,d- ,e; ,and e. are constants determined by the initial
conditions:

Do(A) = Eg(A) =1, Dyj(A) = E1(A) = A.

In particular

e = A -A"1 -0@a"3), e~ = a1 + 6273y,
e; =1 - 0O(a"2), and e_ = O(A~2).

We can now estimate S(A,N), the total number of novel pairs among all
strings of length N, and A~Ns(a,N), the average number of novel pairs
per string. We underestimate S(A,N) by ignoring D(A,N), which is
positive. Likewise, since e_ and eX are positive, we underestimate by

ignoring them. This leaves the approximation

380



N .
s(a,N) > aN + a -na¥ s a7
i=-2
N-1 .,
= aN + (a-1) 3 ejefaNI7?
j=1
>aN = (A - 1)esey [AV 2 4+ AV e 4 72

Multiplying and dividing by N-1, and using the fact that the

arithmetic mean dominates the geometric mean, we have

S(A,N) > AN + (A - l)ejer (N -1) (Aey) (N-2)/2

(1 - 1)) (AN + (v -1)aN (1 -1/a2) (N72)/2,

In the limit of large N this last expression is well approximated by
AV + (v -1)aN exp (-N + 2/2a2).

Division by AN confirms the claim that the average number of novel

pairs per string of length N remains about N until the string length

exceeds the square of the alphabet size.

A simpler but similar calculation can be used to estimate the expected

number of novel singletons (symbols) in a string of 1length N. As
before, let Sj(A,N) be the number of sequences in which the ith
symbol 1is novel. Let that symbol be "x"; then the previous i-1

symbols may be anything but x, and the succeeding N-i symbols may be

anything at all. Thus

N
S{(A,N) = (A - 1)*71aN"3* 4ng s(a,N) = S s5(a,N).

i=1
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As before, this can be underestimated by the geometric mean to give:

(N-1) /2

s(a,N) > an ( ANT1/2(a, )

which is asymptotically
NaN exp -(N -1/2A).

Thus the average number of novel singletons (symbols) in a sequence of
length N remains about N until N exceeds the alphabet size. Similar
arguments may be used as well to show that almost all k-tuples will be
novel until the sequence length exceeds the xth power of the alphabet

size.
DISTRIBUTION OF MEMORY CONTENTS

We next consider the distribution of pairs, triples, and higher-order
tuples in the L/Z compressor memory during three regimes: While the
memory is filling but not yet full; when it has just filled; and when
it is full and in equilibrium. Our assumption is still that input
symbols are selected uniformly and independently over some finite
alphabet. Another assumption must be made, regarding possible
deletions from the memory once it has filled. 1In practice a variety
of deletion strategies have been used, notably l.r.u., whereby the
least-recently used entry is deleted to make room for the newest
insertion. In this paper we will usually make the simpler assumption
that the entry to be deleted is chosen randomly from among the non-
singletons. In other words, deletion is random except that the

alphabetic symbols are immune.
Memory Filling

Initially the compressor memory (or dictionary) contains a singleton

entries, namely the symbols themselves. Each time a match to a
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singleton is found a pair is inserted; should a pair be matched, its
extension to a triple is inserted, and so on. Given the uniform,
independent input assumption, it is clear that the 1likelihood of
matching a given pair is only 1/a times the likelihood of matching a
singleton. Since we are interested mainly in large values of a like
32, 64, 128, 256, we will ignore the possibility of creating
quadruples or higher-order tuples, and lump them with the triples.
Thus the memory at any time contains a singles, B pairs, and 7y others.
Let A be the total number of memory locations, and let w = A - alpha
be the number of locations available for pairs and higher-order

tuples. Then at the time of the tth insertion we have
B+v=t for t < N, B+ v=pn for t >p.

The distribution of $ (hence y) at time t during filling is given by

the formula
Pr{pt) = a'tS(t,B)a(B)

where S(t,B) 1s a Stirling number of the second kind, and a«” is a

falling factorial of a3. The reason is that there are StrB ways of
choosing a sequence of t symbols which includes exactly B distinct
symbols, and that the identities of those B distinct symbols can be
chosen in exactly aq” ways. This count is then divided by at, the

total number of ways of choosing a sequence of t symbols from the
alphabet. Since p is a large number for any reasonable compressor, we
really need the asymptotic distribution in order to analyze the
possibly transient behavior when the memory has just filled, but we

don't know it at this time.
Transient Period Under L.R.U. Deletion
When the memory has just filled with pairs and higher-order tuples we

speculate that there might be interaction between insertion and

deletion by the l.r.u. rule that could cause temporary instability.
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In particular, if the memory size is close to a2 then most of the
earliest arrivals will have been pairs, and many of the recent
arrivals will be triples, as a result of pairs having been matched and
extended. This suggests a '"gradient" from most recent to least recent
shading from triples to pairs. 1In such a case, under l.r.u.-deletion,
disproportionately more pairs will be deleted, abnormally increasing
the proportion of non-pairs until the inability to match triples
causes pairs to be recreated and reinserted. The alternation in
proportions of pairs versus higher-order tuples would 1likely damp
out. This transient behavior has not been confirmed, but is a topic
of ongoing research. The distinction between this hypothesis and the
equilibrium analyses below stems from the l.r.u. deletion policy,
which makes critical not just the distribution of pairs and non-pairs,

but their arrangement in memory as well.
Equilibrium State and Distribution

Finally we consider the distribution of memory contents and the
compression ratio at equilibrium. We once again invoke the
assumption of random deletion (contrary to the l.r.u. rule used in the
previous, speculative section). First we solve for an equilibrium
state, that is, a ratio of pairs to non-pairs that is stable, and then
we generalize to an equilibrium distribution of probabilities of

ratios.
Equilibrium State

Suppose that the memory is full, that it contains B pairs (and thus
B - B non-pairs) and that a randomly chosen input pair is read. The
probability that the input matches some pair in the memory is &hz.

The probability that some pair (rather than a triple) is chosen for
deletion is B/u. Since these are independent events, the four joint

probabilities for the change in B are:
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—
-8 w-Bg _ ,
(+1) - —m5 ¢ m——- gain a pair, lose a triple
o B
o2 - B
0 * —-——7—- - gain a pair, lose a pair
2
a B
AB = —
B po-B , , ,
0+ -+ =——-- gain a triple, lose a triple
ol 1
B B , , _
(-1) ¢+ == * - galn a triple, lose a pair
o2 T8

At equilibrium the first and last probabilities must be equal, and we
can solve for B: (Recall that we are ignoring the creation of

quadruples or high-orders).

a2y n
B ==—m==mi Y= p-a= —me-
a? + p a? +

Using these values we can estimate the compression ratio achieved in
this equilibrium state by compress, which will output B bits (12 by
default) for each 2b bits in a pair can be matched, and will output B
bits for only b bits in when a pair cannot be matched. The ratio at

equilibrium is thus
(¢2 - B)B + BB a?B (a2 + p)lgp
peq T e s S e e e - = mm s = e mem— e —— + O(l/a).
(a2 - B)b + 28B (a2 + B)b (a2 + 2u)lga
From this expression we would expect compress in default mode (with

b=8, B=12) to have Peq = 1.42, which is quite close to experience.
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Equilibrium Distribution

We consider next the equilibrium distribution governing the number of
pairs present in the compressor memory. Again we assume that the
probabilities of creating quadruples, quintuples, and so on are
negligible, so that they can be lumped together with the triples. As
usual, the singletons are permanent memory residents.

With memory size p consider the random variable B describing the
number of pairs present. B ranges from 0, when the memory has no
pairs, to min Qha% when either the memory is full of pairs, or all

pairs are present. As each parse of the uniform, independent input is
made, 3 may increase by 1 or decrease by 1 (except at the extremes) or
stay the same, with the respective probabilities given in Section C1.

above?. This gives us a Markov process with transition matrix

12
-— j=1i-1,
azu
iz i i2
-+ =4+ =2 === j =1,
a? © azp

T, . =

1ed i i
(1 ---)(1 ---) j=1i+1,

a? N

0 otherwise.

Because this is a connected Markov process, it has an equilibrium
distribution pl which satisfies pT = p, or (pT)j = pi. We show in the
Appendix that

4 This distribution was erroneously described in the Snowbird
talk as an Ehrenfest modell. As we shall see, it is rather like a
componentwise product of two Ehrenfest processes.
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Pi = / 2
i i 0 i 1
For a very simple example, let a? = 4, p = 5. Then

0 20 0 0 O
1 8 12 0 O
T = 0 4 10 6 O
0O 0 9 9 2
0O 0 O 16 4

1 1 1

p(i) = --(1,4,6,4,1) x --(1,5,10,10,5) = ---(1,20,60,40,5).
16 31 126

This means that asymptotically the distribution is the product of two

Gaussian distributions, with relatively displaced means unless ol = e
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APPENDIX

It suffices to deal with q = p £ p(i) and to show that

a? "
@i =45 9755 % 4T, Y 9iaTia,e T T
a? K i-1 i-1
(qT) i = 1 = —————- 1 = ——————
i-11i-1 a? L
@ u 2i2 a2 " (i + 1)
+ - e+ mmm=——-
1 i azﬂ' i+1 i+ 1 azu
1 a2 u
=——--l: (@2 = i+ 1)(u -1+ 1)
a’u i-1 i-1
a? © al m
+ (21 + pi - 2i2) + (i + 1)2:]
1 1 i+ 1 i+1
1 a? U
= —-=—- [12+a21+ui—2i2+ (a2 - i) (p - 1))
aZy i i
a m
i i

(VAN
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INTRODUCTION

The basic technical goal of the Alaska SAR Facility SAR
Communications system (ASF SARCOM) is to provide a real-time
operational, applications demonstration of the transmission of
spaceborne synthetic aperture radar (SAR) imagery of Arctic ice over a

bandwidth-limited communications satellite link.

The imagery is to be transmitted from the ASF 1located at the
University of Alaska in Fairbanks to the National Oceanic and
Atmosphere Administration (NOAA) Ice Center (NIC) in Suitland,
Maryland via the DOMSAT link.

The SARCOM system will be designed to handle the spaceborne SAR
imagery of the three following non-U.S., polar orbiting

platform/sensors:

1. E-ERS-1 (European Space Agency) April, 1990 Launch
2. J-ERS-1 (Japan) 1992 Launch
3. RADARSAT (Canada) 1994 Launch

The SARCOM system will be able to handle the spaceborne SAR imagery
in all high and low resolution modes of the three SAR systems over

their operational lifetimes.
The need for data compression in the SARCOM system is driven by two

factors:
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a) the need to transmit in a real-time operation the high
resolution imagery of the SAR sensors with their high data
rates of 40-60 megabits per second (Mbps), and

b) the constraint imposed by the bandwidth limitation of the

communications satellite link, namely 1.33 Mbps maximum.

These factors imply the need for data compression techniques with
effective compression ratios as high as 30-to-1 and 45-to-1,
respectively. All techniques known to produce such high compression
ratios for any reasonable imagery data have been traditionally
categorized as irreversible or fidelity (information) reducing
techniques. Furthermore, many of these techniques impose a very high
arithmetic load on the real-time system used to implement the data

compression coding.

This article will describe how the real-time operational requirements
for SARCOM translate into a high speed image data handler and
processor to achieve the desired compression ratios and the selection
of a suitable image data compression technique with as low as
possible fidelity (information) losses and which can be implemented in
an algorithm placing a relatively low arithmetic load on the systen.

OVERVIEW OF THE SARCOM SYSTEM

Figure 1 is a pictorial of the SARCOM data handling scenario. A
generic, spaceborne SAR is portrayed, representing either of the three
sensors, viewing a portion of the Arctic basin. It is shown operating
in the customary strip map mode indicated by the dashed lines. These
dashed lines represent the edges of the data collection swathwidth as
the SAR footprint looks broadside to one side of the subsatellite

track.

All three of the SAR platforms will be in a polar orbit providing

excellent opportunities to provide synoptic coverage of the Arctic
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basin and land regions. Overlaps in the operating lifetimes of the
three systems should provide unique, spaceborne observations of these
regions at multiple frequencies, polarizations and look angles. Table
1 presents the essential descriptions of the E-ERS-1, J-ERS-1, and
RADARSAT including the basic SAR characteristics, the orbit and the
mission(1). In this presentation the notation high resolution or HI-
RES will be used to denote a nominal ground resolution of 30 meters by
30 meters for a four-look azimuth processing, one-loock range
processing, while low resolution, or LO-RES, will denote a nominal
ground resolution of 240 meters by 240 meters derived from an 8-by-8
averaging of the HI-RES data. The pixel spacing will be 12.5 meters
square and 100 meters square for the HI- and LO-RES imagery,

respectively.

Figure 1 1indicates the SAR raw data collected onboard being
downlinked to the ASF at the University of Alaska at Fairbanks (UAF).
These raw data received at the ASF are basically, accurately time-
tagged radar backscattered, amplitude returns or the so-called radar
echoes from successive pulses. If these radar echoes are considered
in a form of amplitude as a function of the two SAR spatial dimensions
-- slant range (crosstrack) and azimuth (alongtrack) -- they represent
essentially a two-dimensional amplitude interferogram which is
analogous to the two-dimensional intensity hologram used in three-

dimensional, coherent laser holography.

The main system at the ASF will be used to perform the technically
demanding, numerically intensive two-dimensional, <coherent SAR
processing to convert the raw data echoes into the more familiar two-
dimensional SAR images. This conversion from the raw data domain to
the image domain requires not only the time-tagged radar echoes but
also the radar operating parameters, the SAR platform orbit and
attitude data and the earth's geoid size, shape, and motion data. The
ASF will perform this SAR processing in a delayed start, near real-
time mode. At the present time the start delay reflects primarily the

time required to receive and input a sufficiently accurate ephemeris
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for the SAR platform orbit.

Figure 2 portrays the functional block diagram for the basic ASF
system comprised of three major systems: the Receiving Ground System
(RGS), a two part SAR Processor System (SPS), and a two part Archive
and Operations System (AOS). The main system at the ASF is being
funded by the National Aeronautics and Space Administration (NASA).
The ASF physical site at the Geophysical Institute is being funded by
the University of Alaska at Fairbanks (UAF). Jet Propulsion
Laboratory (JPL) is the designer and prime contractor for providing
the end-to-end main ASF system. The ASF will be operated by the UAF.

SARCOM will be a stand-alone image processing and image handling
system that will be collocated with the ASF system. It will be an
attachment and augmentation to the main ASF system for the primary
purpose of accessing the quick turnaround, low and high resolution ice

imagery processed by the ASF system to be delivered to the NOAA Ice
Center. SARCOM will acquire and process these image data at real-time

rates.

The end-to-end SARCOM system is depicted in the pictorial 1labeled
Figure 3. The data "umbilical cords" to the main ASF are also

displayed.

From the ASF site SARCOM will 1link the SAR data via a T1 microwave
link to the NOAA Tracking and Data Acquisition (TDA) station at
Gilmore Creek at real-time rates as shown in Figure 1. Gilmore Creek
is located approximately 12-14 miles northeast of the UAF site. For
the SARCOM operation the usual 1.54 Mbps T1 link bandwidth limitation

will be constrained to an overall maximum transfer rate of 1.33 Mbps.

From the NOAA TDA station the SAR data will be skylifted to the
domestic satellite system (DOMSAT) via another T1 microwave link and
relayed in real-time to the NIC in Suitland, Maryland. The data will
actually be ingested by the existing NOAA Command and Data Acquisition
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(CDA) station and passed to the Ice Center under the auspices of the
National Meteorological Center which are all collocated in the same
building complex in Suitland.

The LO-RES data can be displayed and/or post-processed for
information extraction and analysis immediately upon reception at the
NIC for the original LO-RES imagery didn't need to be compressed prior
to the transmission in real-time using the SARCOM 1.33 Mbps link.
The 64-to-1 reduction of the 8-by-8 averaging of the HI-RES data to
derive the LO-RES data corresponds to at most 0.94 Mbps for the LO-RES
for even the most demanding 60 Mbps maximum HI-RES mode; thus the LO-
RES data will always fit within the 1link bandwidth constraint.
However, the HI-RES image data will have to be compressed/coded using
a data compression algorithm at the SARCOM transmit end in Alaska to
fit within the link bandwidth and then the image must be reconstructed
by using the inverse algorithm at the NIC receive end in Suitland.

The SARCOM operational applications goal 1is to provide SAR ice
imagery to enhance and expand the ice forecasting capabilities and
services of the Ice Center. It is planned that this imagery will
serve as both quick forecasting and synoptic data bases for direct
ship support operating in these areas, longer term sea ice modelling
and applied research areas. These data will be utilized in the
determination of ice concentration, classification of ice types and
the determination of ice motion for an understanding of the kinematics
of ice fields and the incorporation into ice dynamics modelling.

FUNCTIONAL REQUIREMENTS OF THE SARCOM SYSTEM

The basic functional requirements for the SARCOM system at the ASF are
indicated 1in Figure 4. The crucial input data for the SARCOM
application will be the LO-RES and HI-RES Quick-Turnaround Data which
will both be stored on Ampex DCRSi (Digital Cassette Recording System)

cassettes.

The Quick-Turnaround Imagery 1is imagery processed by the main ASF
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system that is less than six hours old from the time of the actual
capture of the raw data echoes used to form the images. These "fresh"
images are a requirement in order that the Ice Center can utilize them
in their quick forecasting for direct ship traffic support.

The SARCOM maximum real-time input rate that must be sustainable over
the system transfer time for the scene is 8 megabytes per second with
1 byte per pixel, up to 12,000 pixels per swathline and up to 640

swathlines per second.

Therefore, the real-time SARCOM system must have an effective
throughput rate of up to 8 megapixels per second. Using the results
of a data compression study conducted at the Digital Image Processing
Laboratory, the algorithm(s) specified for the compression of the HI-
RES data, the most demanding mode of operation for the SARCOM, will
have to support an arithmetic 1lcad in the range of 20-25 real
operations per input pixel or an effective arithmetic rate of 160-200

million floating point operations per second (MFLOPS).

The compressed representation of the HI-RES images and the
uncompressed LO-RES images must be outputted from SARCOM in the
DOMSAT/NOAA data ingest center formats at a maximum rate of 1.33 Mbps
(that is 167 kilobytes per second maximum). There will be 1 byte per
compressed coefficient for the HI-RES data and 1 byte per uncompressed

image pixel for the LO-RES data.

The SARCOM functional components previously illustrated in Figure 3

consist of:
1. a computer subsystem which consists of a control processor (a
host CPU with peripherals), and a high-speed arithmetic

processor (an array processor or a bank/grid of processing

elements)

2. a data storage subsystem
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3. an image/data display subsystem

4. a microwave link subsystem to couple SARCOM to Gilmore Creek

The LO-RES SAR data can be handled by the SARCOM control processor
and high-speed bus at real-time rates without exceeding the 1.33 Mbps
maximum satcom 1link rate and without being compressed by the
arithmetic processor. The HI-RES SAR data will be handled by SARCOM
at real-time rates by utilizing not only the control processor and
high-speed bus but also the high-speed arithmetic processor to
compress the data by compression ratios as high as 30-to-1 or 45-to-1
at real-time processing rates to fit within the 1.33 Mbps maximum.

A data storage subsystem consists of a high-speed, high-capacity disk
drive and its interface to the real-time input/output bus. The data
storage subsystem can provide for interim storage of a single image
frame or as a stacker of image frames prior to being forwarded to the

satcom link at Gilmore Creek.

The seven functional components of the SARCOM end-to-end system in

Alaska and in Maryland are indicated in Figure 5.

Figure 6 shows a more detailed system interconnections diagram between
the SARCOM and the main ASF systems. It includes four of the seven

SARCOM functional components contained at the UAF.

There will be basically only two interconnections between the two
systems. The critical LO-RES and HI-RES Quick Turnaround Data
interface between the ASF Digital Cassette Recorder System (DCRS) and
the SARCOM high speed Input/Output bus is depicted by the wide path
running parallel to the bottom of Figure 6. The only other system
interconnect will be a low speed network connection, designated
DECNET, which will couple the SARCOM CPU and two of the ASF CPUs.
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A preliminary design of the hardware subsystems which will achieve
the SARCOM objectives is indicated in Figure 7 which includes possible
manufacturers and models. The rationale for the system design was to
incorporate off-the-shelf hardware subsystems with significant
existing subsystem software (drivers, high speed mathematics library
and diagnostics) and already demonstrated successful interfacing

between hardware subsystems wherever possible.

Several candidates for the hardware subsystem designated as the array
processor have been identified. This subsystem has as its principal
function the responsibility to perform the data compression of the HI-
RES data in real-time. However, a cost-effectiveness trade-off study
of these processor candidates has not been finalized vyet.
Apparently, the significantly high, sustainable arithmetic load of
160-200 MFLOPS required for the most demanding modes of SARCOM hovers
around the present technological limit of moderately priced ($0.25M-

$0.50M) array processors.

SARCOM DATA COMPRESSION TECHNIQUES

A consideration of the various modes of operation for the three
spaceborne SAR systems for which the SARCOM was designed establishes a
range of design compression ratios which set the framework for the
selection of a data compression algorithm(s). The real-time SARCOM
design compression ratios for the extreme swathwidths and quantization
levels (bits/sample) selectable for the three systems are given below.
The values derived are based on a maximum link bandwidth of 1.33 Mbps

and a pixel spacing of 12.5 meters.

SWATHWIDTH REAL-TIME IMAGE DESIGN
(KM) BITS/SAMPLE RATE (Mbps) COMPRESSION RATIO
150 8 61.4 46.2
100 8 41.0 30.8
50 4 10.4 7.7
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Therefore, the range of SARCOM design compression ratios is from
approximately 8-to-1 to approximately 30-to-1 for the E-ERS-1 and J-
ERS-1 systems while the upper end of the range is extended to
approximately 45-to-1 when the RADARSAT system is included.

Within this design compression ratio range, several data compression
techniques were evaluated at the Digital Image Processing Laboratory
(DIPL) using SEASAT SAR and Shuttle Imaging Radar (SIR-B) imagery of
ice, land and sea(5). Some of the techniques evaluated in both non-
adaptive and adaptive forms included both, a) spatial techniques such
as the linear, bi-linear and quadratic interpolative techniques, a
linked polynomial technique and block truncation coding (BTC), and b)
transform techniques such as the discrete cosine transform (DCT) and
the Hadamard Transform (HT) techniques. The evaluation criteria used
were, a) the fidelity of the reconstructed image determined by the
polling of subjective viewing and the quantitative measure of
normalized-mean-square-error (NMSE), and b) the arithmetic burden

imposed on the real-time SARCOM system.

The results of the study indicated that for the SARCOM data
compression range of 8-to-1 through 45-to-1 the +two transform
techniques, the DCT followed by the HT, vyielded the best results.
Even though the DCT produced significantly better fidelity, the HT
method showed potential due to the its arithmetic simplicity of being
reducible to just a number of additions and no multiplications. This
simplicity of the HT method may be implemented very effectively in

certain system architectures.

Figure 8 presents a block diagram of the data compression schematic
for the Discrete Cosine Transform (DCT) technique at both the transmit
and receive ends. The schematic is a generic one which is actually
applicable to any transform technique. The indicated steps in this

data compression process for the non-adaptive DCT technique (or any
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non-adaptive transform technique) are the well-known steps for any

non-adaptive transform technique(6).

In a real-time data compression process the arithmetic load of any
technique can be 3just as important as the effectiveness of that
technique in producing the highest-fidelity reconstruction of the

original image after data compression.

The arithmetic load of a data compression process on the transmit end
can be characterized by the figure of merit given by the number of
arithmetic operations (real adds and real multiplies) required to
implement the data compression algorithm. In the DIPL study, the DCT
technique was selected as the best performance non-adaptive technique
based on spaceborne SAR ice imagery from SEASAT when both the
arithmetic load and the effectiveness of the reconstructed image were

considered.

Figure 9 presents plots of the number of additions and the number of
multiplications per input pixel of the scene as a function of the
compression factor are plotted for the non-adaptive DCT data
compression technique. The curve parameter, N, in the figure is the
block size of the square used as the subscene size for the application
of the technique. For example, using a subscene size of 128-by-128
pixels as a block size, the non-adaptive DCT technique requires
approximately 11 additions per input pixel and approximately 4
multiplications per input pixel or a total of 15 operations per input
pixel for the most demanding SARCOM compression factors of 30-to-1 and
45-to-1. It is interesting to note that the number of operations per
input pixel is essentially independent of the compression factor above
a compression factor of approximately 10-to-1 for a fixed block size.
Furthermore, for a constant compression factor the number of additions
and multiplications per input pixel for the whole scene and thus the
total arithmetic load increases as a slow function of N, the block

size of the subscene used.
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The actual selection of a subscene block size is usually a trade-off
between choosing a low value of N to reduce the total arithmetic load
and choosing a higher value of N to reduce the subscene block edge
effects when the subscenes are mosaicked together to form the full

scene.

The use of an adaptive technique was found to significantly increase
the fidelity of the reproduced image after data compression for SAR
ice imagery. For the SARCOM range of compression factors the
arithmetic load imposed by the adaptive DCT technique could be bounded
by 20-25 operations per input pixel for compromise subscene block
sizes of N=128. This was the arithmetic load which was used in the

design criteria for the SARCOM real-time operations.

The non-adaptive DCT algorithm selected is a combination of, a) a
variation of the fast DCT algorithm of B.G. Lee(4) to achieve the
forward (or inverse) DCT, and b) decision criteria developed at the
DIPL based on the scene statistics to produce the actual data

compression.

The adaptive DCT algorithm selected is a combination of, a) the same
variation of Lee's fast DCT method to perform the forward and inverse
transforms, and b) the very effective technique of Chen and

smith(2,3) implemented to accomplish the actual data compression.

An example of the very effective adaptive discrete cosine transform
(ADCT) technique is displayed in Figure 10. It is an example of the
reconstructed image (compression factor = 32) side-by-side with the
original at a map scale of 1:500,000. The scene is a SEASAT SAR ice
image of a portion of the Beafort Sea in the Arctic basin with Banks
Island occupying the left one quarter of the image from top to bottom
and the remainder of the image being pack ice near the island and much
more mobile ice in the right half of the image. Figure 11 emphasizes
the fidelity of the reconstructed image by presenting a 64-to-1 zoom
of the previous figure with a more demanding map scale of 1:64,000. It
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is a blow-up of just a small portion of the ice floe region just to
the right of image center in the complete scene.

The author gratefully acknowledges the innovative and efficient

computer programming support provided by K.W. Hoppel 1in the data
compression algorithm development and evaluation.
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SARCOM ARITHMETIC LOAD
NON-ADAPTIVE DISCRETE COSINE TRANSFORM (DCT)
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A VLSI CHIP SET FOR REAL TIME VECTOR
QUANTIZATION OF IMAGE SEQUENCES

Richard L. Baker
Integrated Circuits and Systems Laboratory
Department of Electrical Engineering
University of California

ABSTRACT

This paper describes the architecture and implementation of a VLSI
chip set that vector quantizes (VQ) image sequences in real time. The
chip set forms a programmable Single-Instruction, Multiple-Data (SIMD)
machine which can implement various vector quantization encoding
structures. Its VQ codebook may contain unlimited number of

codevectors, N, having dimension up to K = 64.

Under a weighted least squared error criterion, the engine locates at
video rates the best code vector in full-searched or large tree
searched VQ codebooks. The ability to manipulate tree structured
codebooks, coupled with parallelism and pipelining, permits searches
in as short as O(log N) cycles. A full codebook search results in
O(N) performance, compared to O(KN) for a Single~Instruction, Single-
Data (SISD) machine. With this VLSI chip set, an entire video code
can be built on a single board that permits realtime experimentation

with very large codebooks.

PRECEDING PAGE BLANK NOT FILMED
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Mean-Residual VQ Encoder (MRVQ)
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DISTORTION COMPUTATION

Minimize squared error:

x = Source vector, %' = ith Code vector,
. . __.l K Al 2
! = min S owlx — & ,
i = s v ey N L’:l
k wix)® & Kk w8
_ . -1 k\ "k , f Kk 4
= _ mn 12—  ~ZWanht 2o [
i=1..., N | k=1 k=1 k=1
. o

e = Unit delay element

—_—
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K M . CHANNEL
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S, NEXT-STATE
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#1 #2 #N

Basic Finite-State Vector Quantization Block Diagram.
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PROBLEM: LIMITED SEARCH TIME

e Given:
- 256x256 resolution image
- 15 frames per second

- 4x4 block size.

— 983,040 pixels/sec
— 61440 4x4 blocks/sec

or 16.3 microseconds/block

e Assume:

- Pipeline, 10 MHz clock, 1 distortion/clock

— 163 distortion computations / block
— 163 codevectors searched / block

THESE #'S VARY AT RESOLUTION, BLOCKSIZE, RATE, ETC. - BUT:

» Problem:

— Prefer 4000+ codevectors in codebook
— Must limit search through codebook
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ONE SOLUTION: TREES

LEVEL

3 d
N search O(log N) search
N memory O(N) memory
e Example
N = 4096 = 21° = 2°x27

Search =2°+27 =160
Memory = 2° + 2°x27 = 32 + 4096 = 4128

e Problem: data dependency

- Minimize pipeline latency
- Buffer to process several source vectors
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N89-22351

INTERNATIONAL STANDARDS ACTIVITIES
IN
IMAGE DATA COMPRESSION

Barry Haskell
AT&T Bell Labs
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INTEGRATED SERVICES DIGITAL NETWORK

(ISDN)
D channel ...... 16 kilobits/second (packetized)
B channel ...... 64 kilobits/second
HO channel ...... 384 kilobits /second
H11 channel ...... 1.6 Megabits/second ( T1 )
H22 channel ...... 45 Megabits/second ( T3 )

H4 channel ...... 135 Megabits /second (packetized)
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INTEGRATED SERVICES DIGITAL NETWORK
(ISDN)

e Basic Access 2B 4+ D
e Primary Access H1l = 23B + D

e Other Access ( Evolving )
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Coding for Color TV

Common Committee for International Radio (CCIR)

Recommendation 601 (called CCIR 601)

— Component coding - Y, Cr, Cb

— Sampling: Y 13.5Mhz, Cr & Cb 6.75Mhz
— Total bit rate 216 Megabits/second

— Full frame: 720 x 480 NTSC, 720 x 576 PAL
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Coding for Color TV

American National Standards Institute (ANSI)

 J

Committee T1Y1l.1

So called "Network Quality"

NTSC Composite Signal Coding

Sampling: 14.32Mhz = 4 x Fsc

Bit rate: H11 T3 45Mbs

Unofficial

So called "CATV" Quality
NTSC Composite Coding
Sampling: 10.7Mhz = 3 x Fsc¢
DPCM at 4 bits/pel

Rit rate: H22 ~ T3 ~ 45Mbs

Coding chips exist
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Coding for Video Conferencing

Consultative Committee for Telephone and
Telegraph (CCITT)

e Recommendations H.110 & H.120
— Conditional Replenishment

— Interframe DPCM
— Bit rates: Hil1~ 1.58Mbs or H12~ 2.0Mbs
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Coding for Video Conferencing

Consultative Committee for Telephone and
Telegraph (CCITT)

Recommendation H.12x

Common Intermediate Format ( CIF )
. 360 pels, 288 lines, 30 frames/second,
noninterliaced

Conditional Replenishment
Motion Compensation

Discrete Cosine Transform (DCT)
. DCT Chip available ( 8 x 8 )

Bit rates: N x 384 kbs (N X HO)

Standard complete 1989
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Coding for
Video Conferencing/Telephone

‘Consultative Committee for Telephone and
Telegraph (CCITT)

e Recommendation H.?7???
— Bit rates: M x 64 kbs
— Conditional Replenishment
— Motion Compensation
— Remainder under study

— Standard complete 1990?77
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Coding of Still Color Images

International Standards Organization (ISO)
Studied many algorithms
e Pel Domain
— DPCM and Subsampling
— Universal Coding
e Transform Domain
— DCT fairly well understood
e Bit Plane Coding
— Compatible with FAX
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1ISO Color Image Coding Standard

Pyramid DCT Gave Best Quality
e Progressive Coding and Transmission

— .08, .25, .75 and 2.25 bits/pel

)

— One final transmission for bit preservation
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N89-22352
IMAGE PROCESSING USING GALLIUM ARSENIDE (GaAs) TECHNOLOGY

Warner H. Miller
NASA/Goddard Space Flight Center

ABSTRACT

The need to increase the information return from space-borne imaging
systems has increased in the past decade. The use of multi-spectral
data has resulted in the need for finer spatial resolution and greater
spectral coverage. Finer spatial resolution and a greater number of
spectral bands has increased data rated and system bandwidth
requirements. Although the telecommunication capability planned
through the 1900's is relatively large, feasibility studies on solid
state imaging instruments in support of Al0OS have shown increased
rates that exceed the telecommunication channel capacity. Onboard
signal processing will be necessary in order to utilize the available
Tracking and Data Relay Satellite System (TDRSS) communication channel

at high efficiency.

A generally recognized approach to the increased efficiency of channel
usage 1is through data compression techniques. The method selected
must function in real time satisfying the requirements of both the
high speed data instrument source and 1limited bandwidth of the
telecommunication channel. The compression technique implemented is a
differential pulse code modulation (DPCM) scheme with a non-uniform

quantizer.

NASA has recognized the need to advance the state-of-the-art of
onboard processing and has chosen for this purpose to develop GaAs
integrated circuit technology. NASA's GaAs research effort has
developed an Adaptive Programmable Processor (APP) chip set which is
based on an 8-bit slice general processor. This 8-bit slice and a
control chip which stores the DPCM algorithm has been fabricated.

This chip set will provide a compression ratio of 2 and operate in
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real time to reduce a data rate from an imaging instrument to a data
rate which is compatible with TDRSS.

The presentation will describe the reason for choosing the compression
technique for the Multi-spectral Linear Array (MLA) instrument. Also.
the presentation will give a description of the GaAs integrated
circuit chip set which will demonstrate that data compression can be
performed onboard in real time at data rate in the order of 500 Mb/s.
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